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Abstract

Most of the currently used Al techniques can not provide information about the decision making
process followed to produce a decision. However, these techniques are currently employed in critical
areas such as medicine and public security and is hard to know whether the produced decisions are
unfair, bias, or wrong. In response to this issue, explainable Artificial Intelligence is a multidisci-
plinary research area focused on solving the problems resulting from using opaque AI methodologies.
Explainable artificial intelligence techniques allow users to understand and interact with the results
given by a an artificial intelligence techniques. In an effort to increase the awareness of explainable
artificial intelligence and encourage its development, we provide examples of critical areas where
non-transparent Al techniques are currently used. In this literature review, we show the most rel-
evant developments and point out the major challenges in the development of explainable artificial
intelligence techniques. Finally, we provide research suggestion to improve explainable artificial
intelligence methodologies.

Introduction

Explainable Artificial Intelligence techniques are able to explain their decisions to users. These Al
techniques are fundamental for the safe and trusted application of Al in critical areas. The devel-
opment of Explainable Artificial Intelligence is in an early stage and depend on multiple research
areas such as social sciences, artificial intelligence, and human computer interaction [Miller, 2018].
The current research trends in the explainable artificial intelligence is focused on trying to under-
stand what characteristics make an artificial Intelligence explainable [Ribeiro et al., 2016] and on
the development of competitive artificial intelligence techniques that can return explanations about
their behaviour [Gunning, 2017]. This review aims to increase the awareness about the necessity of
developing explainable artificial intelligence techniques. Additionally, we aim to classify and define
the main development areas in explainable artificial intelligence. Then provide and classify the most
important methodologies within each research area in explainable Al.

This review is divided into five parts. We start the review by describing the development of Artificial
Intelligence techniques while stressing the necessity of developing Explainable Artificial Intelligence
techniques. Additionally, this part identifies different research disciplines that are contributing
towards the full development of Explainable Artificial Intelligence techniques. The second part
discuss the advances in the research area focus on the definition of explainability. In the third part,
we cover the major explainable AT methodologies. We focus our attention into the classification of
the methodologies and the most important development within each area. The fourth part identifies
promising research directions for the development of Explainable Artificial Intelligence techniques.
Finally, the fifth chapter summarises the Explainable Artificial Intelligence key points.



1 Why Explainable Artificial Intelligence

The intelligent systems based on Machine Learning have recently experienced an outstanding pop-
ularity because their ability to solve complex problems with a performance that can rival with
humans [Mnih et al., 2013]. Resulting in its application into multiple fields such as autonomous
cars [Tian et al., 2018], email filters [Guzella and Caminhas, 2009] or medicine [Esteva et al., 2017].
However, these machine learning-based models are limited by their inability to provide explanations
of a decision. These limitations have raised questions about the extent in which models should
be trusted and the fields where these techniques should be applied [Biran and McKeown, 2017].
The lack of trust in machine learning models and the interest of big institutions such as DARPA
[Gunning, 2017] and the European Union |[Goodman and Flaxman, 2016] in developing Artificial
Intelligence techniques with a performance that can rival current machine learning techniques but
also with the capacity to produce explanations has encouraged the research community to develop
Explainable Artificial Techniques.

Explainable Artificial Intelligence (XAI) techniques have the ability to explain their behaviour.
Hence, the user not only will be able to understand the set of rules that leads the AI to take
decisions but also will be able to identify specific information that the Al used to take a specific
decision. Additionally, in XAI users can validate the outcome of these techniques which ensures
a high level of satisfaction and trust that allow the application of these techniques into critical
domains. [Biran and Cotton, 2017].

The research and development of explainable Artificial Intelligence techniques covers multiple disci-
plines. These disciplines might variate in the literature; however, the most frequent classification of
the disciplines is provided by DARPA for its Explainable AI (XAI) program |[Gunning, 2017] which
identifies two big research areas. The first path is focused on the technical side of the explainable
Artificial Intelligence, its goal is to develop Artificial Intelligence techniques that can produce un-
derstandable explanations. The second research path is focused on the concept of explainability
and covers topics such as the characteristic that a good explanation should have, the elements that
an explainable AI should explain, and how to convey the right explanation. In this review, part [3]
covers the technical parts and part [2| covers the the explainability components in the literature.

2 Explanations in Explainable Artificial Intelligence

2.1 Concept of explanation and explainable AI

The definition of explanation has many approaches [Lombrozo, 2006] [Miller, 2018]. However, one
common and simple approach to define explanation in Artificial Intelligence is as an statement that
can answer why-type questions; particularly, why and why-should questions [Gilpin et al., 2018].

Most of the works in explainable AT suggest that, in order to be fully explainable, an explainable
AT has to hold certain characteristics. First, an explainable AT should provide justifications of why
a decision was made and why this decision is better than other decisions. Second, an explainable Al
should be able to interact with the user and allow the user to explore the solution space. Finally,
specially in areas such as planning, an explainable AI should be able to explain why a decision should
not be taken [Gilpin et al., 2018] [Fox et al., 2017]. However, despite the suggested characteristics
are the most common among the literature, this characteristics might change depending on the area
of study since a consensus has not been reached yet|[Gunning, 2017].



2.2 Elements of an explanation

In Al an explanation conveys two basic elements; interpretability and completeness. Interpretability
is defined as the explanation of a process in way that human can understand it. Completeness is the
capacity of an explanation to mimic the actions carried out in a process. There is a trade-off between
these two concepts. Normally, in Al, the techniques with high performance provide explanations
that are barely interpretable by users. Whereas,low performance methodologies tend to provide
more interpretable explanations|[Gilpin et al., 2018]. Consequently, one of the biggest challenges in
explainable Al is to elaborate interpretable and complete explanations.

There is a lack of consensus, when defining interpretability. Despite the availability of a general
concept of interpretability, there is not an agreed specific definition of it. This results in a lack
of metrics to evaluate interpretability [Lipton, 2016]. Some studies have tried to clarify the con-
cept of interpretability and the factors that have influence on it. Works such as [Kim, 2015] and
[Ridgeway et al., 1998] propose a close relationship between explainability and the capacity of gener-
ate trust. However, as indicates in [Gilpin et al., 2018] the concept of trust in Al is not well defined.
[Dragan et al., 2013] relates interpretability with the AI’s capacity to discover causality in the struc-
ture of the data set. |[Lou et al., 2012] uses interpretability as a synonym of understandability and
intelligibility; also labelled as a model transparency. The formulation of the interpretability concept
is necessary for the further development of explainable machine learning models. The literature
review of [Lipton, 2016] covers the elements that the research community has considered to define
interpretability and puts all of them together to approximate the concept of interpretability.

Overall, the development of explainable Al techniques needs the side development of accurate met-
rics. To then, be able to represent the interpretability of an explanation. The development of these
metrics is in parallel to the development of the interpretability concept.

3 Explainable Artificial Intelligence methodologies

The research community has been working in the development of explainable AT methodologies for
a long time. However, the constant increase in the applications of Al in critical fields, the concerns
of important institutions such as the European Union and DARPA, and the public concerns about
the unethical use of AI have fostered an exponential increase in the number of studies about the
topic during the recent years [Adadi and Berrada, 2018]. Simple methodologies such as decision
lists [Rivest, 1987] decision trees [Breiman et al., 1984] or explanations outputs for specific planning
models [Kambhampati, 1990] were one of the first families of methodologies to be used with the goal
of producing explanations. Then, because the good performance of machine learning models and the
increasing complexity in the AT applications, most of the studies in the area suggested methodologies
to enable explainable elements in machine learning methodologies or to develop machine learning
methodologies with the inner capacity to provide explanations. However, other methodologies have
been recently formulated to address the explainable AI problem such as explainable AI planning
[Fox et al., 2017]. In the following sections, we cover the main methodologies and developments
within each methodology.

3.1 Explainable machine learning

The initial research in explainable machine learning models was focused on using interpretable
models such as decision trees, decision lists, decision sets, additive models, and rule-base models
|[Lakkaraju et al., 2017]. However, the high performance of the non-explainable machine learning
models and its applicability into multiple cases encouraged the development of new competitive
explainable machine learning techniques [Gunning, 2017].



We have divided this section into three parts. First, we classify the main methodologies to enable
explications in opaque machine learning models; additionally, we indicate the main developments
in each classification. Second, we emphasise the relevance of the explication methodologies in deep
learning and we cover the main developments. Finally, we point out the main thoughts of the
research community for further research in the development of explainable machine learning.

3.1.1 Classification of explainable machine learning methodologies

The research community has proposed numerous approaches to classify the explainable machine
learning methodologies. The DARPA challenge suggests three approaches to create explainable
machine learning models: Deep Explanation, Interpretable Models, and Model Induction. Deep
explanation is the modification of deep learning model and neural networks into explainable models.
The Interpretable Models approach consist on the creation of new machine learning algorithms
with explainable features. Finally, model induction is the development of add-on techniques to
be used alongside non explainable models to infer explanations. In this literature review, based
in an screening of the literature, We suggest a classification of the methodologies based on three
characteristics; the application moment of the methodology, the scalability of the methodology , and
whether the information provided by the explainable methodology approximates a local or global
behaviour of the machine learning model.

The classification we propose is in line with the classification suggested by [Gunning, 2017] but no fo-
cus in deep learning models. [Lakkaraju et al., 2017], [Lipton, 2016], and [Adadi and Berrada, 2018]
suggest similar classifications to the ones we use in this study. Finally, is it worth mentioning that
the classifications we use are not exclusive between them but are mutually exclusive between the
labels within each classification in most of the cases. A methodology can be classified as highly
scalable and produce global approximations but a methodology can not be classified; to best of
our knowledge, as a model-agnostic and model specific methodology. Table [I]| labels the works we
reviewed into the suggested classifications.

[3.1.11.1 Methodology classification based on the scope of the approzimation

One common approach to enable explanations in machine learning is by producing approximations of
the opaque machine learning techniques by employing explainable models to generate similar result as
the original machine learning model. This type of techniques are labelled as model approximation
techniques [Gilpin et al., 2018]. Approximations can be local or global depending on the model
behaviour that the approximations covers. If the approximation produces an explanation considering
the whole model and the logic of the entire model, the approximation is global. Whereas, if the
approximation explains the the behaviour of an individual set of predictions, the a approximation
is local. |Lakkaraju et al., 2017].

Within the proposed global approximation methods [Lakkaraju et al., 2017] proposes BETA as a
framework to construct global explanations by generating decision sets from the model feature
space. Additionally, the technique ensures the presented decisions set represents well the global
behaviour of the original model by using optimisation techniques. BETA is able to generate model
approximation of user’s inputs to observe the behaviour of the model in situations that are of
interest of the user and explore the solution set. In the same direction, [Yang et al., 2018|] proposes
a global approximation methodology that creates a interpretation tree built on local approximations
resulting from an optimisation process. The tree structure reveals the global behaviour of the
machine learning model. Finally, [Valenzuela-Escércega et al., 2018] proposes to combine learning
approaches from the representation learning field with bootstrapping techniques. The methodology
outputs a scored list of the global pattern in the original model. Other works that propose global
methodologies are [Letham et al., 2015] who uses sparse generative models to produce rule-sets with
explanations and [Nguyen et al., 2016] who develops a methodology to explain the behaviour of



deep neural networks globally through visualizations. In general, most of the global approximations
methodologies reconstruct the original models by selecting the best feature space with optimisation
techniques and then using simple explainable methods in the resulting feature space.

Within the development of local approximations techniques, [Ribeiro et al., 2016] proposes LIME.
This methodology uses an explainable model to approximate individual predictions by perturbing
data individual data instances and observing the variations in the predictions of the original model.
|[Koh and Liang, 2017] approximates models by using influence functions and modifying the inputs
during the model fitting process. Finally, [Baehrens et al., 2010] approximates the local behaviour
of a model by using gradient explanation vectors while uncovering the most important features for
the predictions. Other local approximation models are presented in [Lei et al., 2018§].

Overall, all the works in either local and global approximation indicate the existence of a trade off
between approximation interpretability and approximation fidelity. Hence, the more specific and
detailed explanations outputs given by the approximation the lower the capacity of the approxi-
mation to mimic the result of the original model|Lakkaraju et al., 2017] [Ribeiro et al., 2016]. In
general, most of the approximation studies indicate that the approximation has lower performance
as the original model. However, approximation are crucial to understand how the original model
predicts |[Lakkaraju et al., 2017]. Most of the approximation studies aim to approach Neural Net-
works [Adadi and Berrada, 2018]. However, most of the approximations can be adapted to other
machine learning models. Finally, [Letham et al., 2015] points out the necessity to create a measure
to represent the fidelity of the approximation to the real machine learning models.

[3-1.1. 2 Methodology classification based on the moment where the methodology is ap-
plied

Depending on the application moment of the technique, explainable machine learning models are
model-intrinsic or post-hoc. If the methodology that enables explainable characteristics take action
during the operation of the machine learning model or if the methodology is part of the model,
we label the methodology as a model intrinsic. On the other side, if the methodology takes action
after the generation of the machine learning model in a backward-like process, the methodology is
post-hoc [Lipton, 2016].

Within the model intrinsic methodologies, there are machine learning methodologies that can report
information because the original design of the methodologies allows it. These, methodologies tends
to be simple and limited in complex scenarios; in this classification, we have methodologies such as
decision trees |[Breiman et al., 1984], linear models and probabilistic models [Lou et al., 2012]. This
models received wide attention before the application of machine learning into complex scenarios.
Another kind of model-intrinsic methodologies suggests to modify the original architecture of the
opaque models such as neural networks to produce explanations. In this direction, the studies are
mostly focus in modifying artificial neural networks [Adadi and Berrada, 2018]. [Choi et al., 2016]
suggests a neural network able to provide explainable elements by constraining the weights as-
signed to the neural networks inputs. [Simonyan et al., 2013] suggest a explainable methodology for
convolutional neural networks for image classification; the methodology visualises the most relevant
elements of the image. Other intrinsic methodologies are [Goudet et al., 2018|, [Louizos et al., 2017],
[Dong et al., 2017], [Palm et al., 2018], and [Santoro et al., 2017]. Few approximations methods are
model-intrinsic. Whereas almost all the model-specific methodologies are model-intrinsic method-
ologies.

Post-hoc methods provide multiple kinds of explanations like numeric explanations [Xu et al., 2014],
text explanantions [Krening et al., 2017] or visual explanations [Mordvintsev et al., 2015]. In overall,
most of the approximation methods we describe in the previous section and almost all the model-
agnostic methodologies that we describe in the next section are post-hoc. Most of the methods
currently developed are model-agnositc and post-hoc. Table[I]provides more post-hoc methodologies.



[3.1.11. 8 Methodology classification based on the scalability of the methodology
The explainable machine learning methodologies are model-specific or model agnostic methods de-
pending on the applicability scope of the methodologies. If the methodology is applicable into
multiple machine learning models, the methodology is model agnostic. On the other side, model-
specific methods are specifically designed to work in specific models [Ribeiro et al., 2016].

The main advantage of the model agnostic methodologies is their flexibility; these methodologies are
applicable to every model. In most of the cases, the studies apply model-agnostic methods into artifi-
cial neural networks. However, despite its flexibility, model-agnostic methods do not produce perfect
representations of the real model; hence, losing compactness and accuracy [Lakkaraju et al., 2017].
Most of the recently developed methodologies in explainable machine learning are model-agnostic
[Adadi and Berrada, 2018]

[Adadi and Berrada, 2018] and [Lipton, 2016] classify the model agnostic methodologies into four
categories: visualisation methodologies , knowledge extraction, influence methods, example based
explanations. Visualisation methodologies represent visually the patterns within the black box
models. Some works in visualisation include [Ribeiro et al., 2016] and [Yang et al., 2018] where
both methodologies producing tree-shape explanations of the results. Knowledge extraction or text
explanations methodologies extract verbal explanations such as rule-base-logic from the original
model, as an example [Lakkaraju et al., 2017] present a knowledge extraction methodology that
generates rule based explanations. Influence methods explain the model behaviour through study-
ing the influence of the inputs in the model predictions by perturbing the original inputs. The
works of [Fisher et al., 2018] and [Bien et al., 2011] presents influence methods that condense the
importance of the inputs into numerical values. Is it worth mentioning that influence methodologies
can be used alongside other explainable methodologies to improve the performance of the expla-
nations since these methodologies are able to reduce the input dimension and improve the model
compactness [Tibshirani, 1996]. Feature selection processes can be applied before [Hall, 1999] or
during [Xu et al., 2014] the model fitting process into the data-set, Finally, example based explana-
tions explain the model behaviour by presenting significant data-set instances and the correspondent
predictions such as in [Bien et al., 2011]. In this category, [Wachter et al., 2017] presents conceptual
explanations as a methodology to indicate the minimum changes in the data required to change the
output of the machine learning methodology.

Most of the approximations we defined before are model agnostic and most of the post-hoc method-
ologies are model-agnostic. For example, approximation methodologies such as [Koh and Liang, 2017],
|[Lakkaraju et al., 2017], and [Ribeiro et al., 2016] are model agnostic. Model agnostic can be post-
hoc such as[Ying et al., 2019] who develops a model agnostic method to produce explanations in
graph machine learning methods. However, model agnostic methods cannot be model-intrinsic
methodologies.

On the other hand, the model specific methodologies interprets the model directly and tends to
maintain the original model performance. However, these methods limits the range of models we
can use . Most, of the relevant developments in the model specific methodologies cover neural
networks and deep learning techniques. Most of the model agnostic methodologies are model intrinsic
methodologies We cover these methodologies in section |3.1.2

Overall, there are multiple approaches to classify explainable machine learning methodologies. Is
worth mentioning the overlap among some classification we covered. We consider the necessity
to elaborate a standard classification to facilitate the understanding of the topic and foster the
development of explainable machine learning methodologies.



3.1.2 Explanations in deep learning models

In this part we discuss in detail the evolution of the methodologies that enable explainable charac-
teristics in artificial neural networks (ANN) and Deep Networks. This focus on ANNs is in response
of the "Deep Explanation’ research direction that [Gunning, 2017] suggests to develop explainable Al
methodologies. [Gilpin et al., 2018|] points out three direction in which the research community has
transformed the deep learning method into explainable methdologies; explaining the data processing
process in deep learning structures, through the representations of the data in the networks, and
through the implementation of explanantion-producing systems.

The methodologies that explain ANNs through the explanation of the data processing process ex-
plains why an specific neural network input lead to a specific output. Hence, these methods try
to simplify the complexity of the network to make them explainable. To do so, there are two
approaches, by approximating the neural networks with simple models as suggested previously in
part 1 or by using a salience map [Gilpin et al., 2018]. Among all the approximations, there
are model-intrinsic approximations for neural networks such as [Schmitz et al., 1999] who proposes
ANN-DT as a methodology to specifically approximate ANNs with decision trees. Whereas, the
salience mapping approaches create multiple neural networks with different inputs selected by oc-
clusion [Zeiler and Fergus, 2014]; resulting in map with the features of the data-set area that triggers
changes in the network. Most of the processing methodologies are evaluated by how similar are to
the original neural network [Ribeiro et al., 2016].

A representation of a deep network explains the role and structure of the data within the neural
network structure. Depending on the granularity of the analysis, network representations focus on
how the information works in the single units of the networks and in the layers of the artificial
network [Gilpin et al., 2018]. To represent the behaviour of the neurons, studies have proposed to
visualise the inputs that maximise the activity of the neurons [Zhou et al., 2014] or by assessing
the ability of a neuron in solving a specific task [Bau et al., 2017]. The visualisation of the layers
consist on the representation of the output of a single vector. The most common approach is to
test the performance of a trained layer into other similar problem in what is called transfer learning
[Sharif Razavian et al., 2014]. In overall, representation methodologies does not explain the global
behaviour of the neural network architecture but we can use them to detect bias behaviours in the
neural network structures

Finally, explanation-producing systems are model-intrinsic methodologies that modify the deep
learning architecture to make it explainable. The techniques usually follow three approaches. First,
through attention networks that learn and display the weight of the inputs [Xiao et al., 2015]. A sec-
ond approach is through disentangled representations; this approach identifies relevant elements in
the data; the concept is similar to a feature selection process. However, in this case the methodology
is embedded into the neural network architecture. One example in this category is Beta-VAE that
identifies explainable factors in generative neural networks [Higgins et al., 2017]. The last approach
is through training neural networks with actual explanations. This approach generates human read-
able information resulting from a training process with a data-set that contains human written
explanations [Antol et al., 2015].

Overall, the complete explanation of deep learning models is far from be reached [Gilpin et al., 2018].
So far, despite the numerous advances, there is no a best approach to enable explainable characteris-
tics in neural network structures. Additionally, we have noticed a lack of deep learning methodologies
able to interact with the user and produce human-readable explanations. Finally, [Gilpin et al., 2018§]
indicates the necessity of developing evaluation metrics for explainability.

Concluding explainability in machine learning methods, despite the efforts in enabling explainable
features in machine learning, there is a shortage in the development of methodologies to transform
the output of these models into human-readable explanations. Additionally, to the best of our



knowledge, |Lakkaraju et al., 2017] is the only methodology that allows in some extent iteration
with the user.

During the screening of the literature, we noticed a shortage of classifications for explainable ma-
chine learning methodologies. [Gunning, 2017], [Zeng et al., 2018],[Adadi and Berrada, 2018|, and
[Gilpin et al., 2018] propose different classification with certain elements in common such as the dif-
ferentiation between models with inherit explainable characteristics and methodologies that adapt
opaque machine learning methodologies. However, the classifications are not uniform. Consequently,
we encourage the research community to further research in the development of a common classifi-
cation for explainable machine learning models.

Classification of the method Methods
[Koh and Liang, 2017], [Lakkaraju et al., 2017], [Ribeiro et al., 2016], [Yang et al., 2018],
Model
aenostic [Koh and Liang, 2017], [Lei et al., 2018], [Ying et al., 2019], [Xu et al., 2014], [Krening et al., 2017],
€ [Mordvintsev et al., 2015], [Bien et al., 2011], [Wachter et al., 2017]
[Choi et al., 2016] , [Nguyen et al., 2016], [Goudet et al., 2018], [Louizos et al., 2017],
Model specific [Dong et al., 2017], [Palm et al., 2018], [Santoro et al., 2017], [Simonyan et al., 2013],
[Adadi and Berrada, 2018], [Simonyan et al., 2013]
[Choi et al., 2016], [Goudet et al., 2018], [Louizos et al., 2017], [Dong et al., 2017],
[Palm et al., 2018], [Santoro et al., 2017]
[Koh and Liang, 2017], [Lakkaraju et al., 2017], [Ribeiro et al., 2016], [Yang et al., 2018],
Post-hoc [Koh and Liang, 2017], [Ying et al., 2019], [Xu et al., 2014], [Krening et al., 2017],
[Mordvintsev et al., 2015], [Simonyan et al., 2013], [Bien et al., 2011], [Wachter et al., 2017
[Lakkaraju et al., 2017], [Yang et al., 2018], [Valenzuela-Esc arcega et al., 2018], [Letham et al., 2015] ,
[Nguyen et al., 2016], [Baehrens et al., 2010]
[Ribeiro et al., 2016], [Koh and Liang, 2017], [Lei et al., 2018] , [Bachrens et al., 2010],
[Ying et al., 2019]

Instrinsic

Global-approximations

Local-approximations

Table 1: Classification of the reviewed methodologies

3.2 Planning in explainable artificial intelligence

A big proportion of the methodologies suggested to solve the explainable Al problems belong to
the Machine learning field [Adadi and Berrada, 2018]. However, other AI areas have been pro-
posed to make AT transparent. Explainable artificial intelligence planning (XAIP) is an area within
AT planning that address the explainable AI problem [Fox et al., 2017]. AI planning studies the
development of computational models to reach a goal state from an initial state thought a set
of actions based on planner designs in response of the exploration of the environment conditions
[Russell and Norvig, 2016]. Explainable Artificial Intelligence planning addresses the design of
trusted planners that are able to interact with human while its decision making process remains
transparent. The data independence and the transparent nature of XAIP are the mayor advantages
against other explainable Al methodologies. Whereas, one of the mayor challenges in XAIP is to
transform planner output’s into explanations [Fox et al., 2017].

The development of techniques to explain planners behaviour is not recent [Kambhampati, 1990].
However, most of this initial explanations in planning were focus on specific planning method-
ologies and the explanations were aimed to planning experts [Chakraborti et al., 2017b]. The in-
crease in interest in explainable Al and the use of planners in critical domains such as traffic
control [Vallati et al., 2016], robotics [Cashmore et al., 2018], and healthcare [Canal et al., 2018]
have fostered the development of studies focused on the development of explainable planners.
[Fox et al., 2017] formalises the concept of explainable planning, analyses the suitability of AI plan-
ning to solve the explainable AI challenge, and presents an overview of the opportunities and chal-
lenges in the development of XAIP methodologies.[Langley et al., 2017] presents a similar concept to
the concept presented in [Fox et al., 2017] but oriented to autonomous intelligent agents. The ideas
in [Chakraborti et al., 2017b] and [Zhang et al., 2017] complement the ideas in [Fox et al., 2017].



Explainable AI planning is closely related with other research areas in planning such plan expla-
nation, model reconciliation, and plan applicability. Plan explanations aims to make humans to
understand plans generated by planners [Sohrabi et al., 2011]. Model reconciliation aims to rec-
oncile differences between human models and planners models [Chakraborti et al., 2017b]. Plan
Ezplicability studies the human interpretation of plans [Seegebarth et al., 2012]. Explainable Al
planning takes elements from these research areas to create planner explanations for highly complex
scenarios[Borgo et al., 2018].

The characteristics of Al planners make easier to elaborate explainable methodologies. First, Al
planners are model-based and are independent of the domain dynamics; this allows researchers to
focus on the development of explanations. Second, planners generate action-observation pair sets
which facilitates causality explanation. Third, planners decisions process follows an fixed transparent
criteria which can be queried to know the decision source of each action. Additionally, Al planners
can perform in complex situation where no data is available [Fox et al., 2017].

Despite the potential capacity of planners to facilitates explanations, the transformation of planner
actions into human-interpretable explanations remains as one of the principal challenges in XAIP.
[Fox et al., 2017] presents a road-map with elements that need to be considered when designing
explainable planners. The following sections describes in detail each of this XAIP challenges proposed
by[Fox et al., 2017] and highlights studies that face the corespondent challenges.

3.2.1 Action causality and human-readable explanations

First, planners must be able to demonstrate the causality of their decision and explain this causal-
ity to non-planning researchers despite the complexity of the environment. [Seegebarth et al., 2012]
presents a methodology to generate raw planner explanations in real time; the explanations are proofs
in a first order-logic formulae as a result of employing a hybrid planning system. Additionally, the
work suggests the consideration of the knowledge of user in planning knowledge and the presen-
tation methodology as elements to influence the explanation appropriateness. [Bidot et al., 2010]
suggests to improve the explanation of planners decision process by developing explainable inter-
faces for planners using spoken dialog systems.[Sohrabi et al., 2011] employs domain knowledge to
develop a methodology that generate preferred explanations; the work formalises the concept of
preference and implements into planner language to produce plans that consider preferred expla-
nation. [Rosenthal et al., 2016] contributes directly to the elaboration of explanations in human-
readable form by using verbalisation in planning and produce human-readable narratives of the
planner actions. This study presents the variable verbalization algorithm to segment the agent
plans into fractions that are translated into utterances by mapping the plan segment into a verbali-
sation space using a function.|[Belvin et al., 2001], [Bohus et al., 2014], and [Thomason et al., 2015]
have proposed methodologies to transform autonomous systems actions into narrations. Finally,
[Chakraborti et al., 2017a] proposes the elaboration of visualisations of key component in the the
plan to elaborate human-readable explanations in planning. Overall, the natural evolution to tackle
this challenge is the combination of the techniques to show actions causality and techniques to
generate human-readable information from planning inputs.

3.2.2 Action justification

Second, planners have to justify why the planner plan’s are better than the alternatives suggested by
humans. To solve this problem,|[Borgo et al., 2018] presents XAI-PLAN, a methodology to fill the
gap between the planner plans and the action suggested by the user and explain why the selected
plan is the best. XAI-PLAN allows users to explore a finite set of alternative actions and compare
the alternative plan performances with the original planner’s plan. The works in model reconciliation
aim to solve this problem. [Chakraborti et al., 2017b] suggests to transform the human model into



a model easy to compare with the planner plan with a series of updates [Zhang et al., 2017] tries
to solve the problem by formalising the concepts explicability and predictability compatible with
planners to generate plans that can be understood and compared by humans.

3.2.3 Comparison of human suggestions and planner suggestions

The third challenge in XAIP is to enable planners with methodologies to easily contrast information
from users and planners. [Fox et al., 2017] proposes to use a planning algorithm to plan until a
specific state where the user can compare the suggested plans with the planner validator VAL
presented in[Fox et al., 2005].

3.2.4 Explain the user why an action is not feasible

Fourth, planners must be able to explain why an action is not possible. Normally, an action is not
possible because the state conditions do not allow it or because the action drives to the plan failure
[Fox et al., 2017]. To explain that an action is not possible in the planner, [Fox et al., 2017] proposes
to use the planner validator presented in [Fox et al., 2005] as a method to detect whether the state
does not meet the prerequisites for the action. [Hoffmann et al., 2014], [Steinmetz and Hoffmann, 2016],
and [Béackstrom et al., 2013] suggest model-checking methodologies to prove whether a specific ac-
tion drives the plan to failure. Despite the existence of methodologies to prove that an action is not
feasible, there is not methodology to produce explanations for nor planning-experts[Fox et al., 2017].

3.2.5 Explain why re-planning is required

Fifth, planners have to be prepared to detect and explain why the elaboration of a new plan is re-
quired and why a new plan is not necessary. The literature has elaborated techniques to know
whether a re-planning is necessary. [Fox et al., 2017] proposes to use the proposes filter viola-
tion techniques as showed in [Cashmore et al., 2015] where the method updates a knowledge base
about the new environment and uses filters to find re-planning instances. For the same problem,
[Molineaux et al., 2012] suggests discover history as an algorithm that explores previous observa-
tions in form of historical logs to predict future states; this algorithm detect re-planning instances
and provides justification aimed to planner researchers. The presented methodologies lack in the
elaboration of explanations for non-planner professionals.

3.2.6 Challenges in explainable AI planning

Because the early stage in which XAIP is currently, there are numerous aspects that XAIP needs to
cover. [Fox et al., 2017] suggest to expand XAIP to temporal planning, probabilistic planning , plan-
ning in uncertain situations. Additionally, [Fox et al., 2017] points out the necessity of formalising
the concept of explanaibility in general and in planning. [Seegebarth et al., 2012] mentions the neces-
sity of performing studies to find ways to measure the quality of an explanation. [Borgo et al., 2018]
believes that further research is necessary in the assessment of the context to deliver meaningful
explanations and assess the the explanation impact on the user trust. [Chakraborti et al., 2017a]
indicates that further research needs to be done in the the model acquisition process. In overall,
all the XAIP works consider the necessity to revise previous planning methodologies and re-adapt
them into the explainable planning framework. Another general concern in the XAIP literature is
to bring ideas from other disciplines such as psychology or social-sciences to fill the gap between
explanations and planners output. A good starting point to know the main characteristic of an
explainable planner is in the road-map proposed in [Fox et al., 2017].
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As a conclusion, explainable artificial intelligence planning has brought the attention of the research
community attention as a methodology to solve the AI explainable problem because its natural
capacity to be explainable, the increasing use of planning, and its capacity to solve situations where
learning is not available. However, XAIP is in a early stage and requires the formulation of concrete
methodologies that considers previous work from multiple research areas to eventually be able to
provide a methodology/framework to solve a whole AI problem while providing trusted explanations.

4 Further development in explainable AI

In our literature review, we have identified that most of the explainable machine learning method-
ologies are focused on enabling transparency characteristics in advanced machine learning models.
However, there are few studies aiming to transform machine learning outputs into human readable
format and there are less studies aiming to allow interaction between the machine learning method
and the final user. We would like to recommend the development of interactive methodologies. To
do so, machine learning research can get inspiration from XAIP where we have found more studies
focus on user-Al iteration.

In our literature review, we have identified the potential of explainable planning; particularly, in
situations where learning is not possible. However, we have noticed that most of the works in XAIP
are conceptual. In response, we would like to recommend the development of formal methodologies
to explain the causality of an action into human-readable form or planning methodologies that can
have complex interaction with the suggestion the user. Additionally, we would like to see works that
implements the concept of planning into probabilistic planning and temporal planning. pecially in
areas such as robotics, p. and in situations . The fully formulation of the problem. The development
of a whole framwork to provide explanantion to the user.

In overall, we did not find many formal techniques to transform any kind of input provided from
an artificial intelligence technique into a human readable explanation. To do so a research in the
natural language generation might be helpful. Additionally, we found particularly interesting the
idea of explanation through visualisation which might be useful for Human-AI Teaming by the
implementation of visualisations into the emerging virtual reality technologies.

Finally, most of the studies in the literature remark the necessity of defining a metric to measure
the level of explainability or interpretability. Ideas to produce these metrics can be inspired from
other areas such as logic, argumentation, fuzzy logic, and provenance.

5 Conclusion

In this literature review, we have explained why the development of explainable artificial intelligence
techniques is crucial for the further development of artificial intelligence and its ethical implemen-
tations. We have identified the basic elements that makes an artificial intelligence explainable and
we have remarked areas in the definition of explainability that need a consensus among the research
community. After a screening of the literature, we detected that most of the literature is focus on
enabling transparent and explainable features in machine learning methodologies. However, other
AT methodologies such as Al planning can contribute to solve the explainable AI challenge. Finally,
we have identified numerous challenges the research community need to tackle to create a fully
explainable Als while competing in performance with opaque artificial intelligence methodologies;
thus, solve one of the most critical problems in the current Al field.
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