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Abstract

Three dimensional data provides meaningful information that other kind of data cannot
provide. The complexity of 3D datasets limits the methodologies that can be used to
get useful information from 3D data. Deep learning models are able to manage this type
of data,in exchange deep learning requires much data to perform well. Data Augmen-
tation uses existing data to create new data with the ability to improve deep learning
methodologies. However, traditional data augmentation methodologies are not useful to
improve the classification of 3D data. This research shows that Generative Adversarial
has the ability to synthesise data that can be used to improve the performance of 3D
classifiers in dataset of all sizes.

Keywords: Machine Learning, Computer Vision, Generative Models, GAN, Deep
Learning, Action Recognition, 3D Data, Data Augmentation



Nomenclature

ANNs Artificial Neural Networks
CNN s Convolutional Neural Networks
GANs Generative Adversarial Networks

3D Three dimensional

G() Generator

D() Discriminator

9(P) Discriminator parameters
9(@) generator parameters

w Parameters in a Artificial Neural Network
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1 Introduction

Understanding three dimensional(3D) information of an object is an important tasks on
areas such as computer vision [1], augmented reality [2], virtual reality [3], medicine [4],
and robotics [5]. This data provides more information than standard images, particu-
larly, in situations where volume, shape, and motion characteristics play an important
role. Although most of the analysis of 3D data require the implementation of machine
learning methods, the complexity of 3D representations has limited the application of
traditional machine learning. Deep learning methodologies have demonstrated good re-
sults in handling 3D data for supervised and unsupervised tasks [6] [7]. However, deep
learning models require a large amount of data to perform well and are sensitive to class
imbalances. This often proves to be problematic with 3D data as in practical scenar-
ios the amount of data available is limited, particularly, in medicine. Additionally, the
collection of 3D data requires special tools such as LiDAR scanner or RGBD cameras.

In computer vision, traditional methods to increase the amount of data available
consist on producing small modification of the original data such as image rotation and
flipping. These techniques tend to fall short on improving deep learning models perfor-
mance since the generated variance is minimum. Generative adversarial networks(GANs)
are deep learning structures able to learn the distribution of a dataset and synthesise non
seen instances with similar characteristics as the original. The data produced by GANs
has the potential to introduce enough variation to improve significantly the results of
deep learning models, even when data is very limited [8] [9]. With 3D data, traditional
augmentation methods do not work well [10] and traditional 3D generation models do
not introduce enough variance as are based on mixing part of 3D data to generate new
ones [11]. 3D GANs have the ability to learn 3D distribution and synthesise new 3D
data. However, to the best of our knowledge, the capacity of 3D GANs to generated data
for augmentation purposes has not been tested. This research evaluates the suitability
of 3D GANSs to augment 3D datasets and improve 3D deep learning methodologies.

To evaluate the capacity of 3D GANs to augment 3D datasets, the research uses
a 3D deep learning classifier to identify actions represented in 3D characterisations of
humans performing actions. Then analyses the impact of the augmentation process on
the classifier. The results confirms the capacity of GANs to improve the performance
of 3D deep learning models, even when the data set is limited in size. Additionally, the
research evaluates some aspects of the augmentation process that must be considered to
maximise the performance of a 3D GANs augmentation process. To our knowledge, this
is the first data augmentation strategy suggested for 3D data using 3D GANs.
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2 Background

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) are a type of machine learning structure pro-
posed in [12] typically used for semi-supervised and supervised task. GANs model the
distributions of high dimensional data even when the number of labelled data is scarce.
This learnt distributions can be used to synthesise data with similar characteristic as the
original data, image processing [13], style transfer [14], data augmentation [8], anomaly
detection [15] and classification [16]. Because, the potential of GANs, the literature is
continuously proposing new GANs structures that add new functionalities to the origi-
nal structure. In most of the cases, the experiments made with GANs use images data.
However, other types of data such as audio [17], text [18] and graph data [19] have been
proposed to its implementation with GANs.

GANs are made of two structures a generator G() and a discriminator model D().
The generator G() generate data that comes from the same distribution as the real
data. Whereas the discriminator D() differentiates between real data and synthetic data
generated by G(). The generator G() is a differentiable function that uses a set of
parameters 0(G) to synthesise data by mapping a latent space z inferred from a prior
distribution to a sample with the same characteristics as a sample from the real data
distribution pmodel. The generator learns the parameters 8(%) by feeding synthesised
data to the discriminator and learning to fool it. Hence, the generator learns to generate
realistic data without any contact with real data z. The typical structure of the generator
is a deep artificial neural network model. The discriminator D() is a differentiable
function that uses a set of parameters () to map an input to a probability of the
input being from the same probability distribution as the real data. The input of the
discriminator consist on a set of synthesised dataG(z) and real data z. The discriminator
learns the parameters 0(P) with a normal supervised learning approach with the goal to
label properly real or fake data. Figure 1 illustrates the standard structure of a GAN.

I—' G0 —* G(2)

z:
Latent
Space

Generator: Synthetic
Learns to map the sample
latent space to a

: Real
synthetic sample
D)
Fake

Discriminator:
Learns to distinguish
real data from synthetic
T data
[ Dataset X

Real data
sample

Figure 1: Traditional structure of a Generative Adversarial Network
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GANSs training procedure is a two-player minimax game where the discriminator
tries to maximise the classification performance and the generator tries to minimise
the discriminator classification performance. Equation 2.1 is the traditional training
objective function in GANs. Whereas equation 2.2 is a modified objective function
proposed in [20]. The modified functions produces stronger training signals or gradient
to avoid a vanishing gradient situation where 8(°) and 6(¢) do not change. Section 3.3
contains detailed information about the vanishing gradient problem and the potential
solutions suggested in the literature.

minmax L(D, G) = Egrp, ) [log D(@)] + Bz, () [log(1 — D(G(2)))] (2.1)

L(D,G) = (2.2)
mg‘x [Exwpr(x) [log D(.%')] + EZsz(Z) [log(l - D<G(Z))] + mg‘x EZ’\‘pz(Z) [log D(G(Z)))]

Where E,,_)[log(1 — D(G(z))] is the log of the probability of the discriminator of
predicting that the generated data is not from the real distribution and E,.,,, () [log D(x)]
is the log of the probability of the discriminator to classify real data as real. In the
original formulation 2.1, the discriminator parameters 6(2) are trained by maximising
log D(x) whereas the generator parameters (%) are trained by minising log(1—D(G(z)))
. In equation 2.2 the generator is trained by minimising log(1 — D(G(z)) and the dis-
criminator is trained by maximising log D(G(z)). Initial GANSs structures use stochastic
gradient descent to update the model parameters. Later structures use the optimisa-
tion methodology Adam to update the weights [21]. The updates are made sequentially
where either 8(P) or 0(%) is updated, while the other parameter is fixed.

Typically, the training stops when the game reaches a Nash equilibrium where one of
the players does not change its decision independently of the other player. In most of the
cases, there is not a Nash equilibrium and the training stops when the generation does
not improve in quality [12]. A generator is said to be optimal when pmodel = p(G(x))

whereas as discriminator is optimal when D*(z) = — &1)“;‘;((2(2)))).

One of the biggest problem with GANSs is that there is not an standard methodology
to measure the performance of the generation process [20]. Thus, complicating the
training process. Numerous statistics have been proposed but are designed for particular
cases. Section 3.3 covers GANs measures proposed in the literature. This research
evaluates the performance of GANs by the increase of accuracy triggered by adding
synthetic data to the training set of a classifier.

The popularity of GANs has led to numerous modifications of the original struc-
ture. Most of the prominent modifications are Deep Convolutional GANs (DC-GANS),
Conditional GANs(C-GANs) [22], Cycle-GANSs [14] and Bidirectional GANs [23]. This
projects lies heavily on DC-GANs and 3D-GANs. Section 3.3 describes in detail the
different types of GANs and their applications.
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2.2 Artificial Neural Networks & Deep Learning

An Artificial Neural Network (ANN) is a parametric machine learning model that uses
a series of parameters w to map an input to an output. The basic unit in ANNs are the
input layer, hidden layer, and output layer. The input and the output layers represent
the input and output of the model respectively. Whereas the hidden layer transforms
the input into the output using model parameters. The parameters are learned by using
gradient descent or Mean Squared Error Methods. Gradient descent methodologies are
more frequent than Mean Squared Errors method. The learning policy tries to minimise
a selected cost function given training data. Figure 2 shows a standard ANN structure.

Input Activation
Function Function

Output

[

Hidden layer

Figure 2: Artificial Neural Network structure

A Deep learning structure is a sequence of ANN layers. This structure can approx-
imate complex non-linear functions. The parameters are trained by using a stochastic
back propagation process. This method is a recursive method that transmits the gradi-
ent of the last layers to the initial layers of the Deep learning structure. Typically, deep
learning structures are feed-forward. A feed forward structure presents the input signal
to the network in sequential order without cycles. Some proposed structures contain
cycles. Figure 3 represent a simple deep learning structure with three hidden layers.

output

Figure 3: Deep Learning basic structure

There are almost an unlimited number of deep learning structures as there are large
number of parameter to combine such as the type of hidden layers, number of hidden
layer, types of activation function, and update processes. This leads to the implemen-
tation of suggested structures that have demonstrated to perform well on specific tasks.
One of the most studied and used structures are Convolutional Neural Networks.
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2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep learning structures frequently used for
image classification. These structures reduce complex hierarchical structure, generally
images, into a simplified representation that is easier to classify. Then, in most of the
CNNs suggested structures, a standard feed forward deep learning network maps the
resulting simplified representation into a class. The key elements in a CNNs structure
are the convolutional filters, pooling layers, and Rectifier Linear Unit (ReLu) layers.

The key within a CNNs structure are the convolutional filters or Kernels and the
strides. The kernels are the window that perform convolution operations over the input.
The convolution operation performs a dot product between the network parameters and
the model parameter within the window. Then, the output of the dot products are
summed up into a value. The network parameters are learned to minimise the loss
function of the structure. After each convolution the kernel moves based on the stride.
The size of the Kernel window depends on the input size,however, the standard size is
3 x 3. Strides indicate the number of steps that the kernel takes after performing one
convolution operation. Figure 4 represents a filter of 2 x 2 size with a stride of size 2.

Filter window shifts 2
positions
then stride is 2
[~ —_—

\‘ k’,,.—-f"'

2 x 2 Filter size with
stride of 2

Filter output

Figure 4: Stride and filter example

Another key elements in a CNNs is the pooling layer. Pooling layers reduce the
dimensions of the output of a convolutional layer. These layers are filters that parse
the entire convolutional layer output keeping the most relevant features for each step of
the window. Finally, the Rectifier Linear Unit changes the negative values of the max
pooling output to 0. A CNNs consist on a series of convolutional, max pooling and
Re-Lu layer that reduces the input size until the resulting input is simple enough to be
managed by simple neural networks. Fig 5 illustrates a standard CNNs structure.

> > . —
OQutput
Input Convolutional Pooling Fully Connected
Layer Layer Layer

Figure 5: Convolutional Neural Network structure
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Although most of the CNNs structures are designed for 2D images, the convolution
can also involve a third dimension by adapting the kernel size to include an additional
dimension in the convolutions. Figure 6 illustrates a convolution in 3D data. Fig 5

Figure 6: 3D convolution

2.4 Performance Measures: Confusion Matrix and Accuracy

Accuracy and Confusion Matrix are typical evaluation methods for classification meth-
ods. Accuracy, formulated in equation 2.3, is the ratio of number of correctly classified
instances over the total number of instances.

Number of correct predictions (2.3)
Total Number of predictions made ’

Accuracy =

Confusion matrix evaluates the performance of a classification model on each of the
classes. In a confusion matrix representation, typically, each row of the matrix represents
the instances in a predicted class while each column represents actual instances in a class.
Figure 7 shows the confusion matrix of a binary classifier and the possible outcomes.

Actual values

@ = TP: FP:

2 3 True False

p a | Positive Positive

o

8

o

5 g FN: TN:

E S False True
3 Negative Negative

Figure 7: Confusion Matrix example
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Confusion matrix reports the number of correct an incorrect classifications broken
down class. Whereas Normalised Confusion matrix reports the proportion of correct an
incorrect classifications broken down by class. Normalised confusion matrices allow the
direct comparison between the individual performance of each class.

2.5 3D Data

This research uses three types of three dimensional data, namely voxelgrids, point clouds
and triangular meshes. Triangular meshes represents the surface of 3D objects with a
set of triangles that are interconnected by their vertices. Figure 8 illustrates a simple
representation of a triangular meshes, complex representation contain more information
such as adjacent triangles and edges. Processing triangular meshes can be simplified by
doing calculation on the common vertices rather than for each single triangle triangles.
Figure 9 shows an example of a triangular mesh representing a 3D object.

Va

Triangle Vertices
Index
Vv Vv
3 ° 1 (1,2,3)
vy 2 (2,3.4)
3 (2.4,5)

Figure 8: Triangular mesh example

Figure 9: Triangular mesh example

Point clouds represent geometric objects as a set of points in a x,y,z space in a
Euclidean coordinate frame [24]. Point clouds are represented as a N x 3 matrix, where
N is the number of points. Normally, N is labelled as the point clouds resolution, the
higher the number of point used to represent an object the higher the fidelity of the
representation. Point clouds are considered an standard format to represent 3D data
since are the output format of common scanning devices such as LIDAR scanners, RGBD
cameras, and Kinect [25]. Figure 10 shows a point cloud representation in a z,y,z space.
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Figure 10: Point cloud representation

A Voxelgrids is a grid in a three dimensional space and a voxels is a point in the
three dimensional grid. In contrast to point clouds and triangular meshes, voxels are
not represent with z,y,z coordinates. Instead, voxels are represented as a value in a grid
that indicates the position of the voxels based upon the other voxels in the grid. The
value of a voxels in the grid is usually binary, with 0 indicating that there is not voxel
in the coordinate and 1 represents a space occupied by a voxel. Otherwise, to represent
voxels in grey-scale, the values in the grid could take values in the (0-1) range. Typically,
voxelgrids are represented with 3D arrays. One problem with voxelgrid representations
is their sparsity and large dimensionality, a 64 x 64 x 64 array has 264,144 coordinates.
Typically, voxelgrids are used in medicine [26] and landscape representations [27]. Sec-
tions 3.2 and 3.1 show detailed information about the applications of voxelgrids and
methodologies to process them. Figure 11 shows an voxelgrid example.

Figure 11: 6x6x6 voxel grid representation
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3 Related Work

Identification of human actions has been actively researched in computer vision, however,
is a yet under-explored problem because the complexity of modelling human motion. The
development of three dimensional representations of real world objects and Generative
Adversarial Networks has converged with computer vision resulting in a promising re-
search domain to approach action recognition. This section presents a review of the
previous work done in three dimensional computer vision, Generative adversarial net-
works and its applications in three dimensional computer vision and data augmentation
since it is relevant to the work presented in this research.

3.1 3D data

Three dimensional (3D) depictions of objects are a key element in areas such as computer
vision [1], augmented reality [2], virtual reality [3], medicine [4], and robotics [5]. 3D
data can represent spatial details that are impossible to convey with conventional 2D
pictures. The main obstacle to manipulate 3d representation is the high computational
and memory cost as a result of the additional dimension [6]. There are multiple formats
to represent 3D objects, the most frequent are view-based projections, triangular meshes,
volumetric grids, and point clouds. Section 2.5 explains each 3D data format in detail.
Figure 12 illustrates the differences between different 3D formats

il
""}'55"""""°s;
i )

.

—— A

& ) 64x64x64 32x32x32
Triangular mesh Point cloud voxel representation voxel representation

Vs
&
. - . 64x64x64 32x32x32
Point cloud .
Triangular mesh voxel representation voxel representation

Figure 12: Standard 3D data formats

Multi view projections simplify the analysis of 3D objects but can only show the
3d objects surfaces and does not consider internal information. Triangular meshes and
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point clouds encoding format scale better than other formats because its reduced size.
Additionally, point clouds are the standard output format of common scanning devices
such as LIDAR, RGBD cameras, and Kinect [24]. However, point clouds and triangular
meshes do not have uniform dimensions and do not convey any information about the
neighbour points of a point and the spaces that are not occupied [25].Voxelgrids are
hard to handle because the large dimensionallity but Voxelgrids can convey spatial and
neighbour information that other 3D formats cannot convey. Within the computer vision
domain, particularly in the shape recognition branch, the focus is in the elaboration
of classification structures able to efficiently process and understand 3D data. Then,
implement these classifiers to improve processes in fields where 3D data is frequent.

3.2 3D objects classification methodologies

The large dimensionality of 3D data condition the methodologies that can be used to
perform classification in this format. Convolutional neural networks (CNNs) tend to
perform better than other methods on big dimensional data which makes CNNs the
preferred methodology to classify 3D data. Another approach to classify 3D data is
based on the simplification of 3D data into a reduced space that can be used by standard
classifiers. Following this approach De Deuge et al. [28] uses unsupervised Deep learning
to reduce the data dimensionality, and then applies a nonlinear SVM in the reduced
space. Shape descriptors can be extracted from 3D data and then feed a fully connected
neural network with the descriptor [29]. Generally, the classification methodologies based
on the simplification of 3D data, frequently, do not scale well on large dataset and are
slower than methods based on 3D CNNs [6]. On the other side, within the 3D CNNs
classification methodologies, there are several approaches that depends on the input
format; volumetric CNNs, multi-view CNNs, point cloud CNNs, and spectral CNNs.

Volumetric CNNs use voxelized shapes as input. Voxelized representations are able
to provide neighbour information between the elements in the 3D space and distinguish
between free and occupied spaces [6]. However, Volumetric CNNs are limited by the
computational cost of handling big dimensional and sparse high resolution 3d voxelized
data [7]. As a result, multiple 3D CNNs deep learning structures have been proposed to
make convolutional processes tractable and improve its performance. Shapenet [30] and
Voxnet [6] are pioneer 3D volumetric CNNs structures to perform shape classification.
Other applications of volumetric CNNs include generative models [31] and variational
autoencoders [32]. Volumetric CNNs have been also used for video classification where
the third dimension is the time dimension instead of volume [33].

Multiview CNNs transform 3D images into multiple 2D images. Then standard 2D
CNNs are implemented for their classification [34] [35]. This approach avoids the high
computational cost and memory limitations of 3D data. Multiview CNNs performance
relies on 2D CNNs structures, the method to render 3D images into 2D, and the method-
ology to combine multiple classification result into a single classification. FusionNet [36]
ensembles volumetric and multiview CNNs to boost the performance of 3D classifiers.

Spectral CNNs can classify 3D data given in mesh format. Theses methodologies are
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limited to manifold 3D meshes and it is no clear how this methodology can be applied
to non-isometric meshes. [37] use spectral CNNs to classify 2D data projected into a 3D
maninfold while [38] use the methodology to classify 3D human shapes.

Point cloud CNNs use point cloud volumetric data to perform classification. Most
of the 3D data extraction methodologies produce point clouds by default. Therefore,
no data processing is required which avoids loss of information. Additionally, voxel
grids or multi-view data are highly voluminous data representations that might result
on a computational intractability. One of the difficulties in the development of point
clouds classifiers is the unordered structure of the point clouds. Because the unordered
structure of point clouds, the classification models must be invariant to the input feeding
order and have to be able to capture the relationship between the unordered points.
Some networks have been proposed to perform classification with point clouds. Kd-
network [39] represents point cloud information with kd-trees that are the input of a
CNN structure. Point net[7] is a CNN structure that admits point cloud inputs and
PointNet++ [40] is a variation of Point net that creates a hierarchical structure of point
clouds where Point net is applied recursively on each of the local structures.

3.3 Generative Adversarial Networks

Generative adversarial networks (GANs) are deep learning generative models. Proposed
n [12], GANs are able to model high dimensional data distributions by employing two
deep learning structures, namely the generator and the discriminator. The discriminator
differentiates between synthesised data and real data while the generator tries to fool
the discriminator with synthesised data. Section 2.1 covers technical details of GANs.
Among multiple applications, GANs have been used to study the representation and
manipulation of data distributions, improve machine learning methodologies, deal with
missing or incomplete data, outlier detection and synthesis of realist images [41].

There are five major GANs architectures; fully connected GANs, Convolutional
GANs, Conditional GANs, Inference GANs, and adversarial autoencoders [42]. Each
of these architectures share the same basic adversarial mechanisms but with structural
changes and different functionalities.

Fully connected GANs (Figure 1) are a primitive GANs structure presented in [12]
where the generator and the discriminator use fully connected networks. This structure
is limited to the generation of simple data. Convolutional GANs modify the structure of
fully connected GANs with Convolutional neural networks (CNNs) taking advantage of
the suitability of CNNs to handle complex images [43]. Wu et al. [31] extends the concept
of convolutional GANSs to the 3D data domain by using 3D CNNs. 3D GANs are covered
in detail in section 3.3.2. Conditional GANs (CGANSs), represented in figure 13, were
suggested in [22] where the generator and the discriminator are class conditional. CGANs
improve the generation of multi-modal data and allows the synthesis of a particular class.
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Figure 13: Conditional GANs (CGANSs) standard structure

GANSs with inference models include an inference mechanism to map real data to the
latent space z. The inference system provides GANs with the ability to perform condi-
tional generation, semi-supervised learning and sample reconstruction [16] [23]. Figure
14 illustrates and ALI or BiGAN structure, a standard inference GANs. Illustrated in
figure 15, adversarial autoencoders employ an autoencoder in the standard GANs archi-
tecture. The autoencoders encoder output aims to match the distribution of the latent
space z whereas the autoencoders decoder tries to reconstruct the original image from
the encoder’s output. In this framework, the discriminator differentiates between GANs
latent spaces distributions and the output of the encoder. Adversarial Autoencoders
have applications in clustering and semi supervised and supervised learning [44].

G() G(2) Giz).z
z: .
. Synthetic
Latent Generator: sample Real
Space  Learns to map the latent | D
space to a synthetic 0
sample Fake

Discriminator:
— Learns to distinguish real data
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Dataset x *»  x.E(x) learning uses the tuples (
L ) Real data G(z), z) and ( x, E(x) )
— sample
E() E(x) I
Encoder: Encoded z"
Learns to map real data ;a;‘:
data to the lantent sample P

space

Figure 14: ALI/BiGAN basic structure
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Figure 15: Adversarial autoencoder GAN basic structure

Although image synthesis is a frequent application of GANs [43] [41], GANs can
be applied for other tasks such as data augmentation [8], improving performance of
reinforcement learning models [45] [46], inference [16] [23], semi-supervised learning [47],
imitate agent policies [48] , data privacy [10], anomaly detection [49], and domain transfer
[50]. Section 3.3.1 covers the application of GANs for data augmentation.

Despite the great success of GANs, GANs training process is unstable and challenging
[51]. GANs training is based on the zero-sum non-cooperative game that converges in
a Nash equilibrium when one of the players does not change its decision independently
of the other player decision. This is the optimal point in the GANs minimax objective
function represented in equation 2.2. However, this equilibrium is not guaranteed [20].
Even when the model converges, there is not guaranty that the distribution of the
generated data is close to the probability distribution of the original data [52].

Ideally GANs can represent all the distributions within a data set. However, one
common problem during the GANs training is ‘'mode collapse’ where the generator only
synthesises the same family of samples or just a single type of sample to easily fool the
discriminator [51]. Mode collapse arises from situations where the generator is trained
extensively without updating the discriminator. Then, the generator finds the data that
best fool the discriminator. The diversity of the generator can be improved by using
multiple GANs to cover all the modes of the distribution [53]. Vanishing gradient is
another common problem during GANs training process where the discriminator loss
converges suddenly to zero and the model stops learning [51]. This problem is usually
triggered by the discriminator learning faster than the generator. Then, the distributions
p(z) and p(G(z)) do not overlap and the discriminator can differentiate between them
easily. Because the generator is trained via the discriminator, the generator does not
receive gradient updates when the discriminator loss converges to 0. Adding noise to
the generator have a positive effect on avoiding this problem [51].

Some solutions to improve GANSs training relies on modifying the generator and dis-
criminator structure [43], adding noise to the discriminator [54] , limiting the discrimi-
nator training if its accuracy is under a specific threshold accuracy [31], and modifying
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the generator and discriminator cost functions [55] [56]. In addition, Salimans et al.
[20] suggests several approaches to improve GANSs training process. The first method
changes the generator objective to match the generated images with the discriminator’s
intermediate activation of the real data. This modification aims to increase the amount
of information available. A second methodology, heuristic averaging, aims to speed up
model convergence. Heuristic averaging consist on penalising the network weights if
these weights deviate from the running average of previous weights. The third, mini-
batch discriminator enables the discriminator to be aware of the differences between the
generated distribution and the real distribution as a whole. The method compares the
distance between batches of real data and synthesised data. Then, the extra feature is
used as input for the discriminator to avoid mode collapse. A fourth methodology, one-
sided label smoothing establishes the discriminator target for real data as 0.9 instead of
1 to smooth the discriminator decisions and prevent an overconfident discriminator. The
fifth approach, virtual batch reduces the dependency of an instance to other instances
by normalising every instance within a training mini-batch. The normalisation is based
on the statistics of a reference batch retrieved at the beginning of the training process.

While much progress has been made to understand and improve GANs training
process[51] [20] [52], there still remain the challenge of measuring GANs performance.
There is not an effective methodology to evaluate quantitatively the fidelity of the syn-
thetic images and it is not clear whether different GANs methodologies should be com-
pared [41]. Some used evaluation methodologies are the like-hood estimation [12], and
human inspections [57]. The absence of a procedure to measure the generation quality
complicates the hyper-parameter tuning process. This is particularly concerning because
GANSs sensitivity to hyper-parameters [58].

3.3.1 Data augmentation with generative adversarial networks

Data Augmentation is a promising application of GANs aiming to solve problems ex-
perienced by deep learning models when the dataset is not big enough. Deep learning
models have demonstrated unprecedented performance on machine learning tasks. In
exchange, these models require large amounts of data to avoid overfitting and lack of
generalisation. Additionally, imbalanced datasets result on the model to fall short.

The literature has developed several techniques to avoid loosing performance because
overfitting. One approach is to add additional processes to existing deep learning struc-
tures such as batch normalisation [59], normalisation layers [60] and dropout [61]. When
the training data is particularly small , these techniques cannot capture properly input
invariances that are useful for the training process [8]. Another approach is to generate
additional data by modifying the original data with augmentation processes.

Augmentation methodologies apply transformations to the original dataset to create
new data and improve the generalisation ability of the classifiers. Common augmentation
techniques in 2D and 3D computer vision are flips, rotations, gaussian noise, and random
translations [62] [63] [6]. The application of these techniques is a common practise for
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large and small datasets because the proven benefits [64]. However, normal augmentation
techniques does not represent the underlying data distributions, are limited to simple
data variances, and produce highly correlated training data [10]. These limitations
motivated the implementation of image synthesis methods able to induce variability to
the augmented data while representing the underlying data distributions.

GANSs can model wide large invariance and produce data that comes from the orig-
inal data distribution. Consequently, the literature has started to test the ability of
GANs as a method for data augmentation purposes. [8] proposed Data Augmentation
Generative Adversarial Network (DAGAN), a GANs framework based on conditional
GANSs able to transform data withing the same domain. DAGAN transforms data that
belong to a class into data of the desired class. DAGAN is implemented to synthesise
data that belongs to a class with low frequency to balance the dataset and increase the
classification performance on multiple 2D image public datasets. [9] augments the im-
ages of a dataset with standard augmentation methods and then synthesises new data
with GANs using the already augmented data as a input to improve the liver lesion
classification. [10] synthesises brain tumor MRI scans with image-to-image GANs that
modify the characteristics of the original images to obtain new images. In addition,
This research proves the capacity of GANs to create anonymous synthetic data to be
used to train effective classification and segmentation methods. [65] achieves a superior
bone lesion classifier by using synthetic data from GANs. To do so, the research uses
cycle GANs to synthesise images with bone lesions from a particular part of the body
from images without lesions using images with bone lesion from a different part of the
body. Finally,[66] suggest Conditional Progressive Growing of GANs (CPGGANSs) to
synthesise MRI images of brain images with bounding boxes indicating brain metastases
to improve the performance of object detection classifiers such as YOLO [67] or R-CNNs
[68].

Data augmentation with GANs is particularly suitable in medicine related tasks
because the lack of labelled data and the strict privacy requirements. To the best of our
knowledge,there is not a proposed GANs data augmentation experiment that uses 3D
data and implements a specialised 3D GANSs structure for the augmentation process.

3.3.2 3D Generative Adversarial Modeling

Initial GANs architectures work only with 2D data such as images. The increasing
popularity of 3D data and the development of 3D deep learning structures instigated
the development of 3D GANSs structures [31]. 3D GANs make possible to obtains the
benefits of using GANs in domains where 3D data is used extensively.

Initial 3D generative methods reconstruct and generate new 3D images with non-
parametric approaches based on retrieving and combining elements from the dataset
[11] [69]. With this approach, 3D synthesis was constrained by the availability of mor-
phological 3D templates, supervision during the process, and the 3D elements available
in the repository [31]. Most of these methods use 3D data formats that can be repre-
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sented in 2D such as CAD wire-frames [70] , meshes and skeletons [71]. Another 3D
image synthesis approach is based on deep learning methods such as Recurrent Neural
Networks [72] , Deep Belief Networks [30], Deep Convolutional Auto-encoders [73], and
Capsule Networks [74]. Using 3D deep learning synthesis methods, [75] [76] synthesise
3D data from 2D data , [72] reconstructs 3D images, [77] simplifies 3D images into dis-
criminative representation, and [78] transforms the 3D data format from point clouds
to voxelgrids. Voxelgrids and point clouds are typical 3D data formats used in 3D deep
learning synthesising methods. 3D image synthesis with deep learning requires, in most
of the cases, full supervision and are limited by the variance that can synthesise.

3D GANSs architectures aim to overcome the problems of previous generative meth-
ods. Implementations of 3D GANs claim that GANSs, in contrast of primitive 3D syn-
thesis methods and other deep learning generation methods, does not require structural
templates, does not borrow items from the dataset, generate realistic object with varia-
tions, and does not require supervision [31]. However, 3D GANs are particularly hard
to train because the big size and complex distributions of 3D data [79]. Depending on
the type of 3D data format used as an input for GANSs, there are two approaches; GANs
that works with voxel grids and GANs that use point cloud 3D data.

Motivated by the lack of GANs methodologies for data in 3D formats, Wu et al. [31]
suggested a 3D GANs framework based on volumetric CNNs able to synthesise voxelgrid
3D shapes. Besides synthesis, 3D GANSs, once trained, can map complex 3D voxelgrids
into an informative feature representation which are able to improve the classification
processes. [79] identifies the complex training process of voxelgrids based 3D GANs. As
a result, the research proposes a 3D GANSs structure to make improvements in training
and convergence time. This simplified structure uses a reduced size voxelgrid input and a
training objective function based on the Wassertein distance with gradient normalisation
[55]. Voxelgrid based 3D GANs have been applied for 3D image edition [80].

Achlioptas et al. [24] proposed the first GANs architecture for point clouds. The
motivation of generating point clouds lies on avoiding unnecessary transformations when
the target modality is in point cloud format. This initial point cloud based GANs uses
fully connected layers for the discriminator and 1D-convolutional neural networks for
the generator. [81] modified the initial point cloud GANs architecture. This modified
version uses graph convolutions for the generator to capture the structural information
of the input and improve the generation quality. [82] uses a tree structure to rearrange
the input data and make the architecture proposed in [81] computationally tractable.

3D GANSs development has been focused on developing structures to improve synthe-
sis quality and training stability. To the best of our knowledge, there are not equivalents
of well known GANs frameworks compatible with 2D images in 3D GANs framework.
Additionally, there are not implementation of 3D GANs in the data augmentation,
anomaly detection, data privacy, and domain adaptation frameworks. This research
uses proposed 3D GANs architectures with the training improvements suggested by [20]
to augment 3D datasets and improve the classification performance of human actions
encoded in 3D data.
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4 Approach

Three dimensional data is able to better represent the reality of data and their associated
problems. However, its acquisition is not as simple as with 2D images and is harder to
manipulate because its large dimensions [6]. Deep learning based on convolutional neural
networks is a promising methodology to process 3D data for classification problems [30]
[6]. As a drawback, deep learning do not perform well with small training sets which is
a common problem with 3D data as is acquisition is not straightforward.

Traditionally, data scarcity is solved using augmentation methods that slightly mod-
ify the original data [62]. Generative adversarial Networks are a promising technique to
synthesise data and augment a dataset as are able to generate realistic data with not
seen variations [12] [8]. Data augmentation with GANs has been done frequently with
2D data [8] [10] [65]. However, no augmentation scheme has been suggested with 3D
GANS.

This research evaluates GANs as method to improve the performance of 3D based
classifiers with synthesised data. To do so, the research evaluates four key aspects of the
augmentation process in a classification experiment. This experiment uses a 3D deep
learning classifier to map 3D frames of a human doing an action to the action that the
human is doing in the frame. Then, a 3D GANs generates synthetic labelled frames that
are used to create an augmented dataset to train a new deep learning classifier.

In the experiment, the first aspect to evaluate is whether the augmentation of 3D
data with GANs has the ability to increase the overall performance of a 3D classifier.
The second is to study if GANs are able to synthesise meaningful data for all the different
classes represented in the dataset or just a specific group of labels. The third evaluates
whether the number of synthetic instances that are used for the augmentation process
has an impact on the classification performance. Finally, to analyse if a 3D based
classifier can reach good performance in detecting actions just using 3D frames. This
four analysed aspect in the experiment can be translated into research questions:

e Can Three Dimensional Generative Adversarial Networks increase the performance
of deep learning models through augmentation methods? Does this increase of
performance depend on the number of instances available for training?

e How many synthetic instances have to be added to the original dataset to maximise
the performance of the augmentation strategy 7

e Do Generative Adversarial Networks synthesise the data from the different label
with the same quality? Where quality is measured as the improvement in classifi-
cation performance for the specific label

e Does volumetric data provide enough information to be used in an frame based
action classifier?

To the best of our knowledge no research has evaluated the potential of 3D based
GANS to augment a 3D dataset and no research has used an action recognition classifier
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with a frame based approach while using volumetric data. The research opens the door
to application of GANSs into areas where 3D data is used such as robotics and medicine.

4.1 Dataset

This experiment uses the public available human action dataset Dynamic FAUST. The
dataset was created by Bogo et al. [83] and contains 3D scans of human subjects in
motion. The dataset contains information of 10 subject doing 14 different actions. The
actions are represented as a sequences of frames where the subjects are represented as
3D triangular meshes. Figure 16 represents an action as a sequence of frames

Figure 16: Dynamic FAUST: action as a sequence of frames

The dataset contains a total of 40,000 frames and the number of frames per action
depends completely on the action and the subject who is doing the action. The actions
represented in the dataset are: punching, running on spot, chicken wings, moving hips,
moving knees, jumping jacks, shake arms, shake shoulders, shake hips, one leg loose, one
leg jump, soft hop with two legs, one leg hop, and jiggling on toes. Appendix A show
the label assigned to each action. Figure 17 shows a sample of the frames within the
Dynamic FAUST dataset.

Figure 17: Dynamic FAUST frame samples

As a limitation, the dataset do not provide the equivalent 2D images of the three
dimensional frames that were used to create the 3D objects. Consequently, a comparison
between the classification of 3D frames and 2D frames can not be made in fair conditions.
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4.2 Data Pre-Processing

The original dataset experienced two transformations; a transformation of the 3d for-
mat to represent the frames and a filtering process for the frames that are used for
classification.

In first place, the original dataset format, triangular mesh, is transformed into point
clouds and voxelgrids because the lack of methodologies for triangular meshes. Althought
there are 3D classification methodologies that use triangular meshes, these methodologies
are limited to specific shapes [37] and there is not a GANs methodology compatible with
the format. Whereas, other 3D classifiers that use formats such as point clouds and
voxelgrids have less restrictions and are more developed than mesh based classifiers [6]
[7]. Additionally, there are GANs frameworks for point clouds and voxelgrids [31] [24].

To transform triangular meshes into point clouds, the vertices of the triangles were
transformed into points in a z,y,z plane and the links between vertices were deleted
resulting in a point cloud. Then, point clouds are transformed into voxelgrids using the
spatial occupancy method [84]. This method overlaps a grid of voxels over the point
cloud space and for each voxel in the grid a binary decision is made based on whether
the voxels grid is occupied by points clouds. If a voxel is occupied, the grid coordinate
gets the status of occupied (1) otherwise the grid receives the status on an empty space
(0). The quality and the fidelity of the voxelgrid representation increases with the
dimensions of the overlapping voxel grid. However, an increase in quality increases the
computation complexity as the number of voxels increases as the cube of the dimensions
of the voxelgrid. This research uses voxelgrids of 32 x 32 x 32 and 64 x 64 x 64 size as
are the standard sizes in the domain [6] [30] [31]. All the frames were transformed into
point clouds and then into voxelgrids. Figure 18 illustrates the voxelisation process [85].
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Figure 18: Voxelization process

This research uses a 3D classifier trained with frames of an action to classify a human
action just with one frame. The performance of this methodology relies heavily on the
quality of the information provided in the frames used for training [86]. Consequently,
once the frames are transformed into point clouds and voxelgrids, the frames are filtered
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to keep only informative frames.

The initial frames and the last frames of a sequence do not provide any information
about the action and are removed from the whole sequence. Each action is made by a
sequence of frames that represent the different situations in an action. However, in this
dataset, the initial frames of an action do not contain any relevant information as the
subject is in a steady state. Then, after several frames, the subject starts to perform an
action. The same issue happens with the last action frames.

In addition, after removing the non representative frames, consecutive frames that
present similar information are smoothed into a single frame. In the dataset actions are
presented as frames of an animation animation, to produce an animation, consecutive
frames have to be similar. However, these similar frames provides duplicate informa-
tion. To remove the duplicate information, the frames are grouped in sequences of five
consecutive frames as suggested in [87]. In each group of frames, out the five frames,
one is kept in the dataset and the other four are removed. Hence, keeping differentiated
frames that represent key parts of an action. After the pre-processing stage, the number
of frames available in the dataset is 2634. All the action present a similar number of
frames. Figure 19 represents filtered actions in the different 3D formats used in this
research.
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Figure 19: Frames of a sequence in different 3D formats
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4.3 Dataset Split

To investigate the effect on the amount of data needed for an effective augmentation
strategy. After the pre-processing stage, three different dataset with different sizes were
created, namely small, medium, and big datasets. The small dataset contains 20% of the
processed set ,the medium 60% and the big dataset contains all the instances available
in the processed set. The medium and small set were created while keeping the same
proportion of frames per action as the proportion of frames per action in the original
dataset. The frames used to created the datasets were chosen randomly.

These datasets are created to evaluate the capacity of GANSs to improve deep learning
models in different scenarios with different data limitations. The evaluation is made by
applying the proposed classifier and augmentation scheme into all three datasets. Then,
comparing the impact of the data augmentation impact across datasets. In each of the
three created sets, 80% of the dataset is used as a training set and 20% as a testing set.

4.4 Action Classification

The research aims to use a classifier able to handle 3D data and use it to identify frames
of human actions. Consequently, evaluating the potential of classifiers that use 3D data
as an input and the capacity of 3D GANs to improve classification processed with data
augmentation. The proposed 3D classifier classifies one single 3D frame into an action
or label. Although identifying a human action just from a single frame is possible and
has showed good results, the methodology can be implemented into complex action
recognition processes by classifying multiple frames of an sequence of frames and using
a voting system to identify the action represented in the sequence [87]. Hence, if the
classifier has a high performance in mapping a frame to an action, an action classifier
based on voting multiple frames should have a high performance. Normally the number
of frames used to detect an action is between 1-7 [86]. This approach has been used
previously with 2d data [86]. Although the methodology has good performance, it does
not use volumetric information. It is expected that the 3d information will boost the
classifier as it contains valuable information. Not similar experiments have been done
using 3D based classifiers.

Volumetric CNNs are an attractive methodology to do classification while considering
spatial information. Volumetric CNNs tend to reach good performance compared with
other classifiers. Other 3D classification methodologies such as simple classifiers, point
cloud deep learning and multi-view classifiers are not in line with the project approach
or perform worse than volumetric CNNs. Althought, Point clouds based classifiers avoid
losing information because no data transformation is required, this methods do not ex-
plore spatial and neighbour characteristics and tend to perform worse than Volumetric
grids. [7]. Simple classifiers can not handle the large dimensions of 3D representation of
humans actions [6]. Finally, multi-view classifiers perform well but does not explore thor-
oughly the spacial characteristics of the data [34]. The major problem with volumetric
CNNs is to find an structure to handle the large dimension of voxelgrid data.
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Deep learning 3D CNNs structures are made of multiple layers interconnected using
volumetric CNNs as a back bone layer. The most frequent layers in 3D volumetric
structures are the input layer(I), fully connected layer(FC), and pooling layers (P) [6].
However, there is an unlimited number of combination of layers and hyperparameters.
The 3D action classifier employed in this project follows a Voxnet architecture [6]. Voxnet
has proven to reach similar performance to other volumetric CNNs structures such as
Shapenet [30] but Voxnet requires a smaller number of parameters. Voxnet is a feed-ford
with a layer structure C(32,5,2) - C(32,3,1) - P(2) - FC(128) - FC(K) where K represents
the number of classes, C() a convolutional layer, P a max pooling layer and FC a fully
connected layer. In C , the first parameter indicates the filter size, the second the
stride and the third the padding parameters. The output of the convolutional and fully
connected layers is passed through a leaky rectified non-linearity unit (ReLU) [88] with
parameter 0.1. To avoid model overfitting, the output of each layer is passed through a
dropout regularisation process with a dropout rate of 0.5 [89]. The last fully connected
layer activation function is a softmax nonliterary that provides a probabilistic output.
Figure 20 illustrates a Voxnet architecture.
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Figure 20: VoxNet Architecture

The input of a Voxnet structure is a set of of voxelgrids X={z1, z2,x3...2y,} where
x, represent a frame of an action as grid of size I x J x K where [=J=K=32. The grid
values are integers in the (0-1) range where 1 represents an space occupied by a single
voxel and 0 an empty space. The classifier output is a label assigned to a single instance
ZTp. In this experiment, the labels are the actions to classify. An instance is labelled
with the class with the highest probabilistic output in the softmax non-linearity layer.
The labels are the actions represented in the dataset.

The network hyperparameters of the experiment 3D classifier follow the configuration
suggested in Maturana et al. [6]. The model weights are trained with Stochastic Gradient
Descent with momentum rate of 0.9 and a learning rate of 0.01. The training objective
function is a multinomial negative log-likehood. The batch size is 32. The structure
parameters are initialised using a zero-mean Gaussian distribution.

4.5 3D Generation & Data Augmentation

The performance of deep learning models depends on the amount and quality of the
data used for training [8]. This research evaluates the ability of 3D GANs to synthesise
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new data and improve the performance of 3D deep learning models. To do so, the
trained GANs add synthetic 3D data from the same distribution as the original data
but with unseen variations to the training set. Then, the potential of the augmented
data set is evaluated by comparing the performance of a classifier trained with and
without synthetic samples. The performance of the augmentation lies heavily on the
configuration of the implemented GANs and the type of GANs used [10].

Depending on the format of the synthesised data, there are two types of 3D GANS;
point cloud based GANs [24] and voxelgrids based GANs [31]. In this experiment, GAN
generates in voxelgrid format because the classifier uses voxelgrids. Hence, avoiding loss
of information when transforming the data. The structure of the generator and the
discriminator is crucial for the ability of GANs to synthesise good looking images [79].
The implemented voxelgrid GANs is based on the original 3D GANS structure proposed
in Wu et al.[31] and the training improvements suggested in Salimans et al. [20].

The generator is a feed forward deep learning structure made of five volumetric CNNs.
The number of channels is {512, 256, 128, 64, 1}. All the volumetric CNNs have kernels
of size 4 and all the layers but the first layer have a stride length of 2, the first layer
has a stride of length 1. The structure includes ReLLU and batch normalisation layers
after every volumetric CNNs. The Generator input is a 200-size vector, this vector is
retrieved from a Gaussian distribution (0, 0.33) as is empirically shown that improves the
model convergence and the synthesis quality [51]. The generator output is a voxelgrid
matrix of 64 x 64 x 64 dimension with values in the (0-1) range. Althought, the original
3D GANSs structure suggest to use min log(l — D(G(z))) as generator loss function
where D(G(z) is the generator performance, a generator loss max log D(G(z)) is used
as provides stronger gradients and avoid gradient vanishing problems [20]. Figure 21
illustrates the discriminator.
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Figure 21: The discriminator in 3D-GANs

The discriminator is a feed-forward deep learning structure made of five Volumet-
ric CNNs. The number of channels in each CNNs layer is {64,128,256,512,1}. Each
volumetric convolutional layer has a kernel size of 4 and a stride length of 2, the last
layer has a stride length of 1 instead of 2. In addition, there are leaky ReLU layers
with parameter 0.2 and batch normalisation layers after every volumetric CNN layer.
The last volumetric CNNs layer has a sigmoid activation function. The discriminator’s
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input is a voxelgrid matrix of I x J x K dimensions where I=J=K=64. The output
is in the range (0-0.9) instead of (0-1) because smooths the discriminator decision and
avoids an overconfident discriminator. If the output is above 0.5 the instance is labelled
as real while igf the output is below 0.5 the instace is classified as fake. [20]. Figure 22
illustrates the discriminator.
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Figure 22: The generator in 3D-GANs

GANSs are highly sensitive to the training configuration [58]. However, the lack of a
standard method to measure synthesis quality and the long training process complicate
the hyperparameters tuning process. In this project, the hyperparameters configuration
is based on the original configuration with few modifications. The model parameters are
trained with ADAM optimiser [21] with a 5 = 0.5. The discriminator batch size is 32.
The model parameters are initialised using Xavier initialisation method [90]. Figure 23
represents the assembled 3D GANs structure.
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Figure 23: 3D-GAN standard structure

A common problem in 3D GANSs is the discriminator learning quicker than the
generator because the generation of voxelgrids is harder than distinguishing between
synthesised and real voxelgrids [43]. This leads to the discriminator to differentiate in-
stances perfectly while not issuing gradients. Without gradients, the generator cannot
be updated resulting in a vanishing gradient [51]. To regulate the learning pace, this
experiment GANs implements an adaptive training strategy [31] where the discriminator
is updated only if the discriminator accuracy of the last batch is below 80%.
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The GANs were trained with a generator learning rate of 0.0025 and a discriminator
learning rate of 0.00005 as suggested in the original 3D GANs configuration. Other
learning rates were analysed, if the discriminator learning rate is above 0.00005 the
model tends to fall into a vanishing gradient. Whereas, if the discriminator leaning
rate is below 0.00005 the model has a lower synthesis quality. Figure 24 shows the
evolution of the GANSs loss functions and discriminator accuracy when the discriminator
learning rate is above 0.00005. In this figure the discriminator learns faster than the
generator because the superior learning rate. The accuracy is always above 0.5 and the
discriminator loss is always close to 0 leading to a gradient vanishing problem.
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Figure 24: GANSs training evolution whit high discriminator learning rate

A frequent stopping criteria in GANSs is to stop the training process when there is not
improvement in synthesis quality [12]. During this research 3D GANS training process,
there is a point where the discriminator starts to learn at a faster pace than the generator
despite the measures applied to avoid it. This triggers a vanishing gradient that leads
to a continuous decrease of synthesis quality. Figure 25 shows the evolution of the
discriminator accuracy in two GANs training process. In the first one, the discriminator
gets a continuous accuracy of 100% after the 3500 epoch. Whereas in the second training
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process, the GANs enter into a vanishing gradient after the 4000 epoch.
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Figure 25: Vanishing Gradient in two GANs training process

The synthesis quality peaks in the epochs before the generator turning into a strict
discriminative behaviour. This event happens for every label and in all the datasets
in the experiment. Consequently, in this project, the stopping criteria is the generator
reaching a constant accuracy of 100%. Figure 26 shows the evolution of the quality of
the synthesised data before the training process reaches a vanishing gradient and after.

Epoch  Vanishing  Epoch
4200 Gradient 4700 5200

Figure 26: Synthesis quality: Vanishing Gradient

To generate labelled data, GANs are trained only using the data that belong to
a class. In addition, training one GANs per class reduces the risk of the generator
synthesising only few instances types to fool the discriminator [51]. As a result, multiple
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individual GANs are trained for every label in each dataset. The augmentation process
finishes when the synthesised labelled data is added to the original dataset as a training
data. Figure 27 illustrates the data augmentation process with GANs

Label 1 1 data1
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o Label 2 data 2 Dataset
+
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Figure 27: Data Augmentation Process

4.6 Evaluation

The proposed classification methodology is trained with a training set made of 80% of
the instances of the processed set while 20% of the training set is used as a held out
validation set. The classifier is evaluated with a testing set made of 20% of the processed
data. The validation set is used to track whether the model is overfitting and to evaluate,
during the training process, the best epoch to stop the training. The resulting model
is the configuration of the model in the epoch of the training process with the highest
validation accuracy. Figure 28 shows the evolution of the training and validation set.
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Figure 28: Example of Validation Evolution of 3D Classifier
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Accuracy and confusion matrix are used to evaluate the classification. The evaluation
follows a 10 fold cross validation. The accuracy reports the overall performance of the
model while the confusion matrix is reported to evaluate the performance of the classifier
for each individual action. The performance of the classifier is reported for the three
proposed datasets, namely small, medium, and big. The comparison of the performance
across datasets will show how the 3D classification of actions is affected by the size of
the dataset.

To evaluate the impact of the data augmentation process, GANs are trained with the
training set of each of the datasets. The output of the GANs is added to the training
set to create an augmented set as showed in figure 27. Then, the 3D classifier is trained
with the same approach as the non augmented data. However, the model is trained
with the synthesised and training data. The number of synthetic instances to add is
determined by the augmentation that returns the best performance in the classification
stage. The performance of the classifier trained with and without augmented dataset
are compared to evaluate the potential of an augmentation process made with GANs
in different scenarios. Additionally, the confusion matrices of the augmented and non
augmented dataset are compared to evaluate whether GANs can improve the action
detection of all the actions or just detection of a selected number of action. Hence
prove if GANSs synthesise all the label with the same quality or just instances of specific
actions. In the augmented sets, the 10-fold validation is ensured to not use synthetic
data as testing data. Figure 29 summarises this project stages
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Figure 29: Project pipeline
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5 Results

5.1 Qualitative Analysis

A GANSs with the configuration stated in section 4.5 was trained for each label in each
of the three dataset. Resulting in multiple models able to synthesised new labelled data.
An initial analysis was made to evaluate the variety and quality of the generated data.

The initial visual analysis of the synthesised data reveals that, visually, there is no
difference between the synthesised data from the three different dataset. Additionally,
the GANs did not enter into a complete model collapse state as the trained GANs are
able to generate different variation for each label. Figure 30 illustrates synthesised data
samples where the object in each row belong to the same class. In each row, the first
three objects are the synthetic and the last two are original objects.

Synthesised Data Real Data

Figure 30: Real and Synthethic data sample
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The synthesised objects are similar, but not identical, to the original samples. Al-
though these imperfections, the synthesised 3D objects show that empirically the gen-
erator is able to represent the distribution of complex 3D models.

5.2 Augmentation Size

Once GANs are trained, there is a complete control over the number of instances to
synthesise. Although, an unlimited number of synthetic samples can be added to the
original set, the number of samples to add should be considered. Augment the dataset
with excessive synthetic samples saturates the classifiers with similar information and
increases the chances of training a model that does not generalise well. Contrarily,
augmenting a dataset with few synthetic instances do not employ the potential of the
augmentation. In this project, the augmentation size impact is evaluated by comparing
the accuracy of the proposed classifiers trained with multiple augmentation schemes.

The experiment tries five different augmentation sizes for each dataset. The original
datasets are augmented with synthetic data in a proportional number of the size of the
original set, with 10%, 20%, 30%, 40%, and 50% as used proportions. The number of
synthetic instances per each class added to the original set was considered to keep the
proportion of classes as in the original dataset. Table 1 shows the accuracy results of the
data augmentation in each of the three different dataset for each of the proposed aug-
mentation sizes. The average accuracy and the standard are reported as the experiment
is repeated several times with the cross validation evaluation method.

Percentage Augmented 10% | 20% | 30% | 40% | 50%
Average Accuracy in Small Dataset | 0.759 | 0.759 | 0.791 | 0.797 | 0.794
Standard Deviationof Accuracy
between experiments Small Set
Average Accuracy in Medium Dataset | 0.834 | 0.829 | 0.858 | 0.861 | 0.858
Standard Deviation Accuracy
between experiments Medium Set
Average Accuracy in Full Dataset 0.897 | 0.9 | 0.909 | 0.916 | 0.913
Standard Deviation of Accuracy
between experiments in Full Set

0.015 | 0.026 | 0.021 | 0.01 | 0.019

0.012 | 0.008 | 0.009 | 0.007 | 0.009

0.002 | 0.005 | 0.007 | 0.005 | 0.008

Table 1: Accuracy of 3D classifier with multiple augmented sets

In all the datasets, the accuracy improved as the number of synthetics samples used
for augmentation increased, up to an augmentation proportion of 40% of the size of
the original set. Above this proportion, when more synthesised data is added, the
augmentation fails to improve the accuracy. The classifier accuracy decreases because
the synthetic data cannot provide more meaningful information and the classifier stars
to be feed up with similar information. Proving that the number of synthetic samples
added to the original set has an impact on the performance, this research uses the
best augmentation policies for further comparisons. Figure 31 illustrates the increase of
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performance with the different augmentation strategies in each different data sets.
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Figure 31: Accuracy fluctuation among the proposed augmentation strategies

5.3 Overall Results

The potential of the proposed augmentation strategy to improve the classification of 3D
data is tested by comparing the performance of a 3D classifier trained with the original
and augmented datasets. The impact of the dataset size on the performance of the
augmentation methodology is tested by comparing the performance fluctuation due to
the augmentation across the proposed sets. Table 2 shows the average accuracy and the
standard deviation results of the multiple repetitions of the 3D classifier trained with
the original and the augmented datasets in each of different dataset. The table, also,
reports the fluctuation of performance between the augmented and baseline classifiers.
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Small Dataset | Medium Dataset | Full Dataset
Average Accuracy in Standard Classifier 0.735 0.83 0.888
Standard Deviation StandardClassifier 0.027 0.006 0.006
Average Accuracy in Augmented Classifier 0.797 0.861 0.916
Standard Deviation Augmented Classifier 0.01 0.007 0.005
% Increase of Accuracy with Augmentation +8.43% +3.73% +3.15%

Table 2: Performance comparison between augmented classifiers and non augmented

The proposed augmentation improves the classification performance in all the datasets,
increasing the classification accuracy in the big dataset by 3.15% (88.8% to 91.6%) and
in the medium by 3.75% (83% to 86.1%). The proposed augmentation methodology
performs particularly well in small datasets, the accuracy in the small set increased by
8.43% (73.5% to 79.7%). Figure 32 illustrates the evolution the performance across the
augmented an non augmented sets.
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Figure 32: Augmented Classifiers vs Standard Classifiers

The results of the augmentation process confirms that, in overall, GANs can generate
data from multiple distributions and use these representation to improve the performance
of 3D classifiers. However, not all the distribution are equally easy to reproduce and some
classes might be wrongly represented. This research evaluates whether GANs are able to
represent all the distributions by comparing the classification performance of each single
class between the augmented and normal classifier across the different datasets. Then,
identify the wrongly represented classes to improve the model performance a posteriori.

The percentage of instances that the 3D classifier correctly classifies per class is
retrieved from the normalised confusion matrices of each model. Then, the class per-
formance is compared between the augmented and original datasets in all three dataset
variants. Appendix B shows the normalised confusion matrices for each model. Tables
3, 4, and 5 show the percentage of instances properly identified in each class for the
augmented and non augmented classifiers. The tables also provides information about



5. Results 33

the fluctuation in single class accuracy between augmented a non augmented cases.

Label 0 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13
Label Accuracy
Small Classifier
Label Accuracy Small
Augmented Classifier
Small dataset
Increase label Accuracy

0.57 | 1.00 | 0.57 | 0.67 | 0.85 | 0.75 | 0.88 | 0.63 | 0.78 | 0.70 | 0.50 | 0.67 | 0.88 | 0.78

0.57 | 1.00 | 0.71 | 0.67 | 0.92 | 0.67 | 0.88 | 0.88 | 0.56 | 0.70 | 0.71 | 0.73 | 1.00 | 0.78

0.00 | 0.00 | 0.25 | 0.00 | 0.09 | -0.11 | 0.00 | 0.40 | -0.29 | 0.00 | 0.43 | 0.09 | 0.14 | 0.00

Table 3: Small Dataset Label Accuracy comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Label Accuracy 0.73 | 0.97 | 1.00 | 0.97 | 0.88 | 0.56 | 0.7 | 0.83 | 0.86 | 0.71 | 0.61 | 0.74 | 0.92 | 0.89
Medium Classifier
Label Accuracy Medium
Augmented Classifier
Medium dataset
Increase label Accuracy

0.82 1 0.97 | 1.00 | 0.97 | 1.00 | 0.60 | 0.82 | 1.00 | 0.77 | 0.75 | 0.75 | 0.85 | 0.96 | 0.93

0.13 | 0.00 | 0.00 | 0.00 | 0.14 | 0.07 | 0.06 | 0.21 | -0.11 | 0.05 | 0.23 | 0.15 | 0.04 | 0.04

Table 4: Medium Dataset Label Accuracy comparison

Label 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Label Accuracy
Full Classifier
Label Accuracy Full
Augmented Classifier
Full dataset
Increase Accuracy

0.86 | 0.86 | 0.97 | 0.86 | 0.97 | 0.86 | 0.95 | 0.89 | 0.93 | 0.85 | 0.71 | 0.87 | 0.98 | 0.87

0.97 1 0.97 | 0.94 | 091 | 0.94 | 0.85 | 0.95 | 0.97 | 0.93 | 0.96 | 0.85 | 0.91 | 0.98 | 0.85

0.13 | 0.12 | -0.03 | 0.06 | -0.03 | 0.00 | 0.00 | 0.09 | 0.00 | 0.12 | 0.21 | 0.05 | 0.00 | -0.02

Table 5: Full Dataset Label Accuracy comparison

In overall, the classification performance of the individual labels increases with the
augmentation process showing the ability of GANs to model the distributions of multiple
situations and synthesise non-seen data from those distributions. There are classes
such as 3 (moving hips), 6 (shake arm), and 13 (jiggling on toes) whose classification
performance remains invariant after the augmentation. Contrarily, the classification
performance of class 8 (shake hips) decreases as a result of the augmentation. This
shows that, certainly, there are distributions that are harder to learn and either GANs
cannot model those distributions or require a different configuration of parameters to
learn. One simple solution is to avoid using GANs to synthesise labelled data for those
classes that GANs cannot learn their distribution. However, knowing a priori that
GANs cannot generate a distribution properly is a complicated task as there is not a
good measure to evaluate the fidelity of the GANs learned distributions [20]

Overall, the results confirm that the proposed classifier detects actions using 3D
objects even when the number of data available is limited. The presented augmentation
strategy improves the classification performance of classifiers trained on datasets of all
sizes, particularly, small dataset. The efficacy of the augmentation strategy depends on
the number of synthetic samples added to the original set. Finally, GANs are not always
able to represent all the distributions within a dataset which reduces the performance
of the augmentation strategy if wrong representations are included in the training set.
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6 Conclusion

This research proposes a method to synthesise 3D human representations using 3D gen-
erative adversarial networks to improve the performance of deep learning models for the
classification of 3D images. The research outlines that structural modifications of the
original 3D GANSs structure improves the generation quality of complex 3D data distri-
butions. The proposed 3D GANs learns the distributions within a dataset to introduce
novel labelled objects into the training set of a deep learning classifier. This results
in improvements in classification performance in all kinds of datasets, particularly, in
low-data settings. However beyond that, this research shows the limitations of GANs
to produce a variety of non-seen information. Consequently, the number of synthetic
instances used for augmentation should be considered. Furthermore, this research iden-
tifies that GANs can learn incorrectly some distributions withing a dataset which leads
to a performance decrease of the augmentation. Finally, the good results obtained by the
proposed 3D classifiers and the ability of 3D based GANs to learn 3D data distributions
for its generation confirms the suitability of 3D data to represent information.

6.1 Further Research

Future work should be focused on adapting 2D based GANs structures into 3D based
GANSs. 2D based GANSs structures able to perform domain transfer such as cycle GANs
or pix2pix GANs have shown good results on augmenting small datasets. Another re-
search path lies on comparing the performance of GANs based on the generation of voxels
and GANs based on the generation of point clouds for the augmentation of 3D datasets.
Additionally, the development of methods to augment datasets only with meaningful
synthesised samples or a method to evaluate GANs learned distributions might have a
positive impact on the augmentation process. Finally, the proposed strategy needs to be
evaluated in other domains where the implementation of 3D data will lead to improve-
ments. The suggested methodology is potentially suitable for domains such as human
robot interaction to improve agents perception of the real world or in medicine to boost
the detection of diseases with 3D data provided by scans, body sensors, and wearables.
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A Table Number corresponding with the classified actions

Label Action
punching

running on spot

chicken wings

moving hips
moving knees

jumping jacks
shake arms

shake shoulders
shake hips

one leg loose

one leg jump
soft hop with two legs
one leg hop
jiggling on toes

— =
DlEolco o g k|w oo

—_
[N

—
w

Table 6: Label assigned to each action

B Confusion Matrices

0 1 2 3 a4 5 6 7 8 9 10 11 12 13
0 0.5714 o 0 0.2857 o 0 o 0.1429 o o o o o o
1 0 1 0 0 1] 0 0 1] 0 0 o 0 0 1]
2 0.1429 0 0.5714 0 1] 0 0 1] 0.1429 0 1] 0.1429 0 1]
3 0 o 0 0.6667 | 0.1667 0 0 0 ") 0 o 0.0833 | 0.0833 o
4 0 o 0 0 0.8462 0 o o 0 0.0769 [ 0.0769 0 o o
5 0 o 0 0 o 0.75 0 o 0 0 o 0.125 0 0.125
6 0 o 0.125 0 o 0 0.875 o 0 0 o 0 0 o
7 0 0.125 0 0.125 o 0 0 0.625 0 0 o 0.125 o o
8 o 0 0 o o 0 0.1111 0 0.7778 o o o 0.1111 1]
9 0 o 0 0 1] 0 0 1] 0 0.7 0.2 0 0.1 1]
10 0 0.1667 0 0 0.0833 | 0.0833 0 1] 0 0.0833( 0.5 0 0.0833 1]
11 0 o 0 o o 0 o o o 0 o 0.6667 | 0.3333 o
12 0 o 0 0.125 o 0 0 o 0 0 o 0 0.875 o
13 0 o 0 0.1111 o 0.1111 0 o 0 0 o 0 o 0.7778

Figure 33: Normalised Confusion Matrix of the classifier trained with the small dataset
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10

11

12

13

0 1 2 3 a4 5 6 7 8 9 10 11 12 13
0.5714 o 0 0.4236 o 0 o 0 o o o o o o

0 1 0 0 1] 0 0 1] 0 0 o 0 0 1]

0 1] 0.7143 0 1] 0 0 1] 0.1429 0 0 0.1429 0 1]

0 o 0 0.6667 o 0 0 0.0833 ") 0 o 0.0833 | 0.1667 o

0 o 0 0 0.5231 0 o o 0 0.0769 o 0 o 1]

0 0.1111 0 0 o 0.6667 0 o 0 0 o 0.1111 0 0.1111
0.125 o 0 0 o 0 0.875 o 0 0 o 0 0 o

0 o 0 o o 0 0 0.875 0 0 o 0.125 o o
0.1111 0 0 0.1111 o 0 0.1111 0 0.5556 o o o 0.1111 1]

0 1] 0 0 1] 0 0 1] 0 0.7 0.2 0 0.1 1]

0 0.0714 0 0.0714(0.0714 0 0 1] 0 0.0714 (0.7143 0 0 1]

0 o 0 o o 0 o 0.0509 o o 0.0909 [ 0.7273 | 0.090% o

0 o 0 0 o 0 0 o 0 0 o 0 i o

0 o 0 0.1111 o 0.1111 0 o 0 0 o 0 o 0.7778

Figure 34: Normalised Confusion Matrix of the classifier trained with the augmented

small dataset

Figure 35: Normalised Confusion

dataset

10

11

12

13

o 1 2 3 4 5 6 7 8 9 10 11 12 13
0.7273 | 0.0455 o 0 0 o 0.0455 o 0.0909 0 o 0.0909 0 o
o 0.9714 o 0 0 o 0 0 0 o 0.0286 0 0 o
o 0 1 0 0 o 0 o o 0 o 0 0 o
o 0 o 0.9714 0 o 0 0.0286 0 o o 0 0 o
o 0 o 0 0.875 | 0.025 0 o o 0.075 | 0.025 0 0 o
o 0 o 0 0.08 | 0.56 0 0 0 0.04 | 016 | 0.04 0 0.12
0.0455 | 0.0455 o 0 0 o 0.7727 o 0.0455 0 o 0 0.0455 | 0.0455
0.0435 0 o 0.0435 0 o 0 0.8261 0 o o 0.0435| 0.0435 o
0.0357 0 o 0.0357 0 o 0.0357 o 0.8571 0 o 0 0 0.0357
o 0 o 0 0.0714 o 0 0 0 0.7143 | 0.2143 0 0 o
o 0.0278 o 0 0.1329 o 0 o 0.027g | 0.1389 | 0.6111 | 0.0556 0 o
o 0 o 0 0 o 0 0 0 o 0.037 | 0.7407| 0.2222 o
o 0 o 0.04 0 o 0 0 o 0 o 0.04 | 0.92 o
o 0 o 0 0 o 0 0 0.0357 0 o 0 0.0714 [ 0.8529

Matrix of the classifier trained with the medium
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.8182 o o o o o 0.0455 | 0.0455 | 0.0455 o o 0.0455 o o
1 0.0286 | 0.9714 o o o o o o o o o o o o
2 o o i o o o o o o o o o o o
3 o o o 0.9714 o o o 0.0286 o o o o o o
4 o o o o 1l o o o o o o o o o
5 o o o o 0.04 0.6 o o 0.04 0.04 | 0.16 o o 0.12
] 0.0455 o o o 0.0455 o 0.8182 | 0.0455 o o o o o 0.0455
7 o o o o o o o il o o o o o o
8 o o o 0.0667 o 0.0667| 0.1 o 0.7667 o o o o o
9 o o o 0 0.1429 o o o o 0.75 | 0.1071 0 o o
10 o 0.0556 o 0 0.0556 o o o o 0.0833| 0.75 (0.0556 o o
11 o o o 0 o o o o o 1] o 0.8519 | 0.1481 o
12 o o o 0 o o o o o 1] o 0.04 [ 0.96 o
13 o o o 0 o o o o o 1] o 0 0.0714 | 0.9286

Figure 36: Normalised Confusion Matrix of the classifier trained with the augmented
medium dataset

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 |0.8611 0 0 0.0278 0 0 0.0278 | 0.0278 | 0.0278 0 0 o] 0.0278 0
1 0.0172 [ 0.8621 0 0 0.0345 0 0.0172 0 0 0.0172 | 0.0517 o] 0 0
2 0 0 |0.9714 o 0 0 0 0 0.0286 0 0 o] 0 0
3 0 0.0172 0 |0.8621|0.0517 0 0 0 0 0 0 0.0345 | 0.0345 0
4 0 0.0149 0 0.0149 [ 0.5701 0 0 0 0 0 0 o 0 0
5 0 0 0 o 0.0476 | 0.8571 0 ) 0.0476 o 0.0238 o 0 0.0238
6 o o 0.0263 o o o 0.9474 o o o o o o 0.0263
7 0.0263 o o 0.0263 o o o 0.8947 o o o o 0.0526 o
8 0.0217 o o o o o 0.0217 | 0.0217 | 0.9348 o o o o o
9 0 0 0 o 0.0851 0 0 0 0 |0.8511| 0.0426| 0.0213 0 0
10 0 0.0517 0 1] 0.069 0 0 0 0 0.1207 | 0.7069 | 0.0517 0 0
11 |o0.0222 0 0 0.0222 o 0 o 0.0222 0 o 0.0222 | 0.8667 | 0.0444 0
12 0 0 0 0.0238 0 0 0 0 0 0 0 0 |0.9762 0
13 0 0 0 0.0213(0.0213 | 0.0213  0.0213 0 0.0426 0 0 o] 0 |0.8723

Figure 37: Normalised Confusion Matrix of the classifier trained with the big dataset
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0 0.971 | 0.000 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

1 0.000 | 0.966 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

2 0.000 | 0.000 | 0.943 | 0.000 | 0.000 | 0.000 | 0.000 | 0.057 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

3 0.000 | 0.017 | 0.000 | 0.914 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.052 | 0.000 | 0.000

4 0.000 | 0.000 | 0.000 | 0.000 | 0.940 | 0.000 | 0.000 | 0.015 | 0.000 | 0.015 | 0.030 | 0.000 | 0.000 | 0.000

5 0.000 | 0.024 | 0.000 | 0.000 | 0.000 | 0.854 | 0.000 | 0.000 | 0.073 | 0.000 | 0.024 | 0.000 | 0.000 | 0.024

6 0.000 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.947 ( 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | O.026

7 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.974 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.000

8 0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | 0.000 | @.935 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

9 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0856 | 0.044 | 0.000 | 0.000 | 0.000

10 0.000 | 0.016 | 0.000 | 0.016 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.066 | 0.852 | 0.016 | 0.016 | 0.000

11 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.022 | 0.911 | 0.022 | 0.000

12 0.000 | 0.000 | 0.000 | 0.024 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.976 | 0.000

13 0.000 | 0.000 | 0.000 | 0.021 | 0.000 | 0.043 | 0.021 | 0.000 | 0.043 | 0.000 | 0.021 | 0.000 | 0.000 | 0.851

Figure 38: Normalised Confusion Matrix of the classifier trained with the augmented
big dataset

C Code

#import packages we are suing for the experiment
import tensorflow as tf
import numpy as np

import scipy.io as io

from scipy.io import loadmat
#import skimage.measure as sk
import os

import sys

import hbpy

import numpy as np

import scipy.io as io

import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from tqdm import *

def get_1ist_elements_without_pattern_not_current_directory(
directory_to_search):
#Comprehension list that by given a directory, explores all the
elements
files= [element for element in os.listdir(directory_to_search)]
# return a list
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def

def

def

return files

; #function to create an array of an specific label
7 def

create_array_labels (label ,number_instances):
#

label_array=np.full ((number_instances),label)
#

return label_array

saveFromVoxels (voxels, path):

fig = plt.figure()

ax = fig.gca(projection=’3d’)

ax.voxels(voxels, facecolors=’b’, edgecolor=’k’)
fig.savefig(path)

plt.close ()

plt.clf ()
plt.cla()
del fig

create_folder_in_path_check_folder_created(path_creation,
path_to_create):
#get a list of the elements that are in the directory we want to
create
directories_in_directory_where_eant_create=\
get_list_elements_without_pattern_not_current_directory(path_creation
)
#Get the paths of the elements in the directory where we want to
create a
#new directory
directories_path_in_directory_where_eant_create=\
[path_creation+’/’+path for path in \
directories_in_directory_where_eant_create]
#If the directory we want to create has not been created before,
create one
if path_to_create not in
directories_path_in_directory_where_eant_create:

#create the directory

os.mkdir (path_to_create)

double_voxels_dimension(voxel_array_to_transform):
number_voxels=voxe1_array_to_transform.shape[0]

#Get the number of voxels per dimension
one_dimension_voxels=voxel_array_to_transform.shape [1]
double_dimension=one_dimension_voxels*2

print (double_dimension)

#create an array to store the transformed instances
voxel_array_transformed=np.zeros((number_voxels,double_dimension,\
double_dimension,double_dimension ,1))

#loop through all the instances in the array we want to transfrom
for voxel_tranformation_index in range (number_voxels):
#get the array that we want to transform
voxel_to_transform=voxel_array_to_transform[
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voxel_tranformation_index]

71 #modify the voxels

72 voxel_to_transform=np.pad(voxel_to_transform, (0, 0),\

73 ’constant’,constant_values=(0, 0))

74 #Square voxels

75 voxel_to_transform=nd.zoom(voxel_to_transform,\

76 (2, 2, 2), mode=’constant’, order=0)\

77 .reshape ((double_dimension ,double_dimension ,double_dimension ,1))

78 #Add the transformed voxel to the array that contains the
transformed

79 #voxels

80 voxel_array_transformed[voxel_tranformation_index]=\

81 voxel_to_transform

82 #return the modified array

83 return voxel_array_transformed

85 #Fucntion to reduce the size of a set of voxels
86 def half_voxels_dimension(voxel_array_to_transform):

87 number_voxels=voxel_array_to_transform.shape [0]
88 #Get the number of voxels per dimension
89 one_dimension_voxels=voxe1_array_to_transform.shape[1]

90 half_dimension=int (one_dimension_voxels/2)

92 #create an array to store the transformed instances
93 voxel_array_transformed=np.zeros ((number_voxels ,half_dimension,\
94 half_dimension ,half_dimension,1))

95 #loop through all the instances in the array we want to transfrom

96 for voxel_tranformation_index in range (number_voxels):

97 #get the array that we want to transform

98 voxel_to_transform=voxel_array_to_transform[
voxel_tranformation_index]

99 #modify the voxels

100 voxel_to_transform=np.pad(voxel_to_transform, (0, 0),\

101 ’constant’,constant_values=(0, 0))

102 #Square voxels

103 voxel_to_transform=nd.zoom(voxel_to_transform,\

104 (0.5, 0.5, 0.5), mode=’constant’, order=0)\

105 .reshape ((half_dimension ,half_dimension,half_dimension,1))

106 #Add the transformed voxel to the array that contains the
transformed

107 #voxels

108 voxel _array_transformed[voxel_tranformation_index]=\
109 voxel_to_transform

110 #return the modified array

111 return voxel_array_transformed

HARHBAAHHBRAAHBAAHBRARHHAR BB ARAARBRBHBRAHBRAHBRARBBARBRBAABHBRABHBRAHBRARBRAR BB BRBHBRAHBHRS

114 #The below function were taken from the github post:
5 #https://github.com/meetshah1995/tf-3dgan
116

1

117 #Tensoflow function to create a set of weight for our models
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118 def init_weights (shape, name):
119 return tf.get_variable(name, shape=shape,\
120 initializer=tf.contrib.layers.xavier_initializer ())

123 #Fucntion to create biases for the generator and discriminator
124 def init_biases (shape):
125 return tf.Variable(tf.zeros (shape))

128 #Batch normalisation layer with tensorflow

120 def batchNorm(x, n_out, phase_train,scope=’bn’):

130 with tf.variable_scope(scope):

131 #BEta parameter in batch normalisation

132 beta = tf.Variable(tf.constant (0.0, shape=[n_out]),name=’beta’,\
133 trainable=True)

134 #Gamma parameter

135 gamma = tf.Variable(tf.constant (1.0, shape=[n_out]) ,name=’gamma’
o\

136 trainable=True)

137 #Ema

138 batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name=’moments’)

139 ema = tf.train.ExponentialMovingAverage (decay=0.5)

140 #function to calculate the mean value of the update

141 def mean_var_with_update():

142 ema_apply_op = ema.apply([batch_mean, batch_var])

143 with tf.control_dependencies([ema_apply_opl):

144 return tf.identity(batch_mean), tf.identity(batch_var)

145 #

146 mean, var = tf.cond(phase_train,

147 mean_var_with_update,

148 lambda: (ema.average(batch_mean),\

149 ema.average (batch_var)))

150

151 #0tput of as a result of the ooutput normalisation

152 normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1le
-3)

153

154 return normed

156 #Batch normalisation funtion
157 class batch_norm(object):

158 def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
159 with tf.variable_scope (name):

160 self .epsilon = epsilon

161 self .momentum = momentum

162 self .name = name

163

164 def __call__(self, x, train=True):

165 return tf.contrib.layers.batch_norm(x,decay=self.momentum,

166 updates_collections=None,
167 epsilon=self.epsilon,
168 scale=True,
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is_training=train,
scope=self .name)

#Function to create a threeshold for the discriminator
def threshold(x, val=0.5):

x = tf.clip_by_value(x,0.5,0.5001) - 0.5

x = tf.minimum(x * 10000,1)

return x

#LEaky relu layer

def lrelu(x, leak=0.2):
return tf.maximum(x, leak*x)

# def lrelu(x, leak=0.2):

# f1 = 0.5 x (1 + leak)

# £f2 = 0.5 * (1 - leak)

# return f1 * x + f2 * abs(x)

20

HUHHSHHHASHHBH SR BB S HHH Global Parameters

HAHAHHAHAHHAH AR R AR BAHRHHH

2

n_epochs = 6000
batch_size = 64

g_1lr = 0.0025
d_1r = 0.00005
beta = 0.5
d_thresh = 0.8
z_size = 200
leak_value = 0.2
cube_len = 64

#fucntion to create a gemnerator
weights = {}
def generator(z, batch_size=batch_size, phase_train=True, reuse=False):

strides = [1,2,2,2,1]

with tf.variable_scope("gen", reuse=reuse) :
z = tf.reshape(z, (batch_size, 1, 1, 1, z_size))
g_1 = tf.nn.conv3d_transpose(z, weights[’wgl’], (batch_size
,4,4,4,512) ,\
strides=[1,1,1,1,1], padding="VALID"

= tf.contrib.layers.batch_norm(g_l, is_training=phase_train)
tf.nn.relu(g_1)

g_1
g_1

g_2 = tf.nn.conv3d_transpose(g_1, weights[’wg2’], (batch_size
,8,8,8,256),\
strides=strides, padding="SAME")
g_2 = tf.contrib.1ayers.batch_norm(g_2, is_training=phase_train)
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218 g_2 = tf.nn.relu(g_2)

219

220 g_3 = tf.nn.conv3d_transpose(g_2, weights[’wg3’], (batch_size
,16,16,16,128) ,\

221 strides=strides, padding="SAME")

222 g_3 = tf.contrib.layers.batch_norm(g_3, is_training=phase_train)

223 g_3 = tf.nn.relu(g_3)

225 g_4 = tf.nn.conv3d_transpose(g_3, weights[’wgd’], (batch_size
,32,32,32,64) ,\

226 strides=strides, padding="SAME")

227 g_4 = tf.contrib.layers.batch_norm(g_4, is_training=phase_train)

228 g_4 = tf . nn.relu(g_4)

230 g_5 = tf.nn.conv3d_transpose(g_4, weights[’wg5’], (batch_size
,64,64,64,1) ,\

231 strides=strides, padding="SAME")

232 #Choose between an sigmoid or tangh activation function. I got
the best

233 #the best result with the sigmoid which outputs values between 1
and O

234 g_5 = tf.nn.sigmoid(g_5)

235 #g_5 = tf.nn.tanh(g_5)

236

237 #print statements

238 print(g_1, ’gl’)

239 print(g_2, ’g2’)

240 print(g_3, ’g3’)

241 print(g_4, °’g4’)

242 print (g_5, ’gb’)

243

244 return g_5

246 #function to generate the discriminator
247 def discriminator (inputs, phase_train=True, reuse=False):

248 #strides that the discriminator will use

249 strides = [1,2,2,2,1]

250 #Piece of code to add the multiple layers

251 with tf.variable_scope("dis", reuse=reuse):

252 d_1 = tf.nn.conv3d(inputs, weights[’wdl’], strides=strides,
padding="SAME")

253 d_1 = tf.contrib.layers.batch_norm(d_1, is_training=phase_train)

254 d_1 = lrelu(d_1, leak_value)

255

256 d_2 = tf.nn.conv3d(d_1, weights[’wd2’], strides=strides, padding=
"SAME")

257 d_2 = tf.contrib.1ayers.batch_norm(d_2, is_training=phase_train)

258 d_2 = lrelu(d_2, leak_value)

259

260 d_3 = tf.nn.conv3d(d_2, weights[’wd3’], strides=strides, padding=
"SAME")

261 d_3 = tf.contrib.layers.batch_norm(d_3, is_training=phase_train)

262 d_3 = lrelu(d_3, leak_value)
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d_4 = tf.nn.conv3d(d_3, weights[’wd4’], strides=strides, padding=
"SAME")

d_4 = tf.contrib.layers.batch_norm(d_4, is_training=phase_train)

d_4 = lrelu(d_4)

d_5 = tf.nn.conv3d(d_4, weights[’wd5’], strides=[1,1,1,1,1],
padding="VALID")
d_5_no_sigmoid = d_5
d_5 = tf.nn.sigmoid (d_5)
#print statements
print(d_1, °’d1’)
print(d_2, ’d2’)
print(d_3, ’d3?)
print(d_4, ’d4’)
print(d_5, ’d5’)

return d_5, d_5_no_sigmoid

#Function to set up the initialization weights
def initialiseWeights():

global weights
xavier_init = tf.contrib.layers.xavier_initializer ()

weights[’wgl’] = tf.get_variable("wgl", shape=[4, 4, 4, 512, 200],
initializer=xavier_init)

weights[’wg2’] = tf.get_variable("wg2", shape=[4, 4, 4, 256, 512],
initializer=xavier_init)

weights[’wg3’] = tf.get_variable("wg3", shape=[4, 4, 4, 128, 256],
initializer=xavier_init)

weights[’wgd’] = tf.get_variable("wgé4", shape=[4, 4, 4, 64, 128],
initializer=xavier_init)

weights[’wgb’] = tf.get_variable("wgb", shape=[4, 4, 4, 1, 64],
initializer=xavier_init)

weights[’wd1’] = tf.get_variable("wdl", shape=[4, 4, 4, 1, 64],
initializer=xavier_init)

weights[’wd2’] = tf.get_variable("wd2", shape=[4, 4, 4, 64, 128],
initializer=xavier_init)

weights[’wd3’] = tf.get_variable("wd3", shape=[4, 4, 4, 128, 256],
initializer=xavier_init)

weights[’wd4’] = tf.get_variable("wd4", shape=[4, 4, 4, 256, 512],
initializer=xavier_init)

weights[’wd5’] = tf.get_variable("wdb5", shape=[4, 4, 4, 512, 1],
initializer=xavier_init)

return weights
#Function to ensemble the gan and train it

def trainGAN (dataset, path, label, is_dummy=False, checkpoint=None):
#’/content/drive/My Drive/working/merged_data/analysis_gans_final/full
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dataset/3/biasfree_350.cptk’):
weights = initialiseWeights ()

z_vector = tf.placeholder (shape=[batch_size,z_size],dtype=tf.float32)
x_vector = tf.placeholder (shape=[batch_size,cube_len,cube_len,
cube_len,1],\

dtype=tf.float32)

net_g_train = generator (z_vector, phase_train=True, reuse=False)

d_output_x, d_no_sigmoid_output_x = discriminator (x_vector,
phase_train=True,\

reuse=False)
d_output_x = tf.maximum(tf.minimum(d_output_x, 0.99), 0.01)
summary_d_x_hist = tf.summary.histogram("d_prob_x", d_output_x)

d_output_z, d_no_sigmoid_output_z = discriminator(net_g_train,
phase_train=True, reuse=True)

d_output_z = tf.maximum(tf.minimum(d_output_z, 0.99), 0.01)
summary_d_z_hist = tf.summary.histogram("d_prob_z", d_output_z)

# Compute the discriminator accuracy
n_p_x = tf.reduce_sum(tf.cast(d_output_x > 0.5, tf.int32))
n_p_z = tf.reduce_sum(tf.cast(d_output_z < 0.5, tf.int32))

d_acc = tf.divide(n_p_x + n_p_z, 2 * batch_size)

# Compute the discriminator and generator loss

# d_loss = -tf.reduce_mean(tf.log(d_output_x) + tf.log(l-d_output_z))
# g_loss = -tf.reduce_mean(tf.log(d_output_z))

d_loss = tf.nn.sigmoid_cross_entropy_with_logits(10gits=
d_no_sigmoid_output_x,\

labels=tf.ones_like (
d_output_x))
d_loss += tf.nn.sigmoid_cross_entropy_with_logits(logits=
d_no_sigmoid_output_z,\

labels=tf.
zeros_like (d_output_z))
g_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=
d_no_sigmoid_output_z,\

labels=tf.ones_like(
d_output_z))

d_loss = tf.reduce_mean(d_loss)

g_loss = tf.reduce_mean(g_loss)

summary_d_loss = tf.summary.scalar("d_loss", d_loss)
summary_g_loss = tf.summary.scalar("g_loss", g_loss)
summary_n_p_z = tf.summary.scalar("n_p_z", n_p_z)
summary_n_p_x = tf.summary.scalar("n_p_x", n_p_x)

summary_d_acc tf.summary.scalar("d_acc", d_acc)
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net_g_test = generator(z_vector, phase_train=False, reuse=True)

para_g = [var for var in tf.trainable_variables () if any(x in var.

name for x in [’wg’, ’bg’, ’gen’])]

para_d = [var for var in tf.trainable_variables() if any(x in var.

name for x in [’wd’, ’bd’, ’dis’])]

# only update the weights for the discriminator network

optimizer_op_d = tf.train.AdamOptimizer (learning_rate=d_lr ,betal=beta

) .minimize (d_loss,var_list=para_d)
# only update the weights for the generator network

optimizer_op_g = tf.train.AdamUptimizer(1earning_rate=g_1r,beta1=beta

) .minimize (g_loss,var_list=para_g)
saver = tf.train.Saver ()
with tf.Session() as sess:

sess.run(tf.global_variables_initializer ())

#Load checkpoints in case we need to retrain our model

if checkpoint is not None:
saver .restore(sess, checkpoint)

if is_dummy:

volumes = np.random.randint (0,2, (batch_size,cube_len,cube_len

,cube_len))
print (’Using Dummy Data’)
else:
volumes = dataset.astype(np.float)
print (’using own data’)
# volumes *= 2.0
# volumes -= 1.0

#Lists to keep track of the loss fucntions and accuracies of the

generator
#and discriminator
loss_function_generator=[]
loss_function_discriminator=[]
discriminator_accuracy=[]

for epoch in range(n_epochs):

idx = np.random.randint(len(volumes), size=batch_size)

x = volumes [idx]

z_sample = np.random.normal (0, 0.33, size=[batch_size, z_size
1) .astype(np.float32)

z = np.random.normal (0, 0.33, size=[batch_size, z_size]).
astype(np.float32)

# z = np.random.uniform(0, 1, size=[batch_size, z_size]).

astype (np.float32)

# Update the discriminator and generator
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d_summary_merge = tf.summary.merge ([summary_d_loss,
summary_d_x_hist,
summary_d_z_hist,
summary_n_p_x,
summary_n_p_z,
summary_d_acc])

summary_d, discriminator_loss = sess.run([d_summary_merge,
d_loss],feed_dict={z_vector:z, x_vector:x})

summary_g , generator_loss = sess.run([summary_g_loss,g_loss],
feed_dict={z_vector:z})

d_accuracy, n_x, n_z, d_x,d_z = sess.run([d_acc, n_p_x, n_p_z

,d_output_x ,d_output_z],feed_dict={z_vector:z, x_vector:x})
#print ("nx_nz:",n_x, n_z, "\nd_x:",d_x.reshape(batch_size), "
d_z:",d_z.reshape(batch_size))

print ("nx",n_x,"nz",n_z)
if d_accuracy < d_thresh:
sess.run([optimizer_op_d],feed_dict={z_vector:z, x_vector
:x})
print (’Discriminator Training ’, "epoch: ",epoch,’,
n

d_loss:’,discriminator_loss,’g_loss:’,generator_loss, "d_acc: .
d_accuracy)

sess.run([optimizer_op_gl,feed_dict={z_vector:z})

#Append values to the lists that keep track of the results
loss_function_generator.append(generator_loss)
1oss_function_discriminator.append(discriminator_loss)
discriminator_accuracy.append(d_accuracy)

print (’Generator Training ’, "epoch: ",epoch,’, d_loss:’,
discriminator_loss,’g_loss:’,generator_loss, "d_acc: ", d_accuracy)

#####4##### END OF THE CODE retrieve from https://github.com/
meetshah1995/tf -3dgan #########4HGHEHEH
#Print generations and store generated data
if epoch % 50 == 0:
#generate data
voxel_volumes= sess.run(net_g_test,feed_dict={z_vector:
z_samplel})
z = np.random.normal (0, 0.33, size=[batch_size, z_sizel]).
astype (np.float32)
voxels_volumens_II= sess.run(net_g_test,feed_dict={
zZ_vector:z})
#get random numbers as index to retrieve generated
instances
id_ch = np.random.randint (0, batch_size, 4)

#plot the random generated data
for i in range(3):
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431 print (voxel_volumes[id_ch[i]].max())

432 if voxel_volumes[id_ch[i]].max() > 0.5:

433 voxels = np.squeeze (voxel_volumes[id_ch[i]])

434 #filter the voxels to binary values

435 voxels[voxels < 0.5] = 0

436 voxels[voxels >= 0.5] = 1

437 #modify the shape of the voxels

438 voxels=nd.zoom(voxels,\

439 (0.5, 0.5, 0.5), mode=’constant’, order=0)\

440 .reshape ((32,32,32))

441 #save image

442 saveFromVoxels (voxels ,path+"/img_{}_{}".format (epoch,
i))

443

444 #concatenate arrays

445 generated_array=np.concatenate ((voxel_volumes,
voxels_volumens_II),axis=0)

446 del voxel_volumes

447 del voxels_volumens_TII

448

449 #get information of our generations and create a label
array

450 number_generated_instances=generated_array.shape [0]

451 label_array=create_array_labels (label,
number_generated_instances)

452

153 #save the array

154 with hbpy.File(path+"/generated_data_array_{}".format (
epoch)+’.h6°, ’w’) as hf:

155 hf.create_dataset("generated_data",data=generated_array
)

456 hf.create_dataset ("label",data=label_array)

157 hf.close ()

158

459 #delete the generated array

160 del generated_array

161

462 #save a checkpoint of the model to load it to generate extra
data or

163 #to keep going with the training in case of interruption

464 if epoch % 50 == 0:

165 saver .save (sess, save_path = path + ’/biasfree_’ + str(
epoch)+’ .cptk’)

466

167 #save the evolution of the loss fucntions

168 with hbpy.File(path+"/evolution_loss_functions{}".format (

epoch)+’.h6°, ’w’) as hf:

169 hf.create_dataset("generator_loss",data=
loss_function_generator)

470 hf.create_dataset ("dicriminator_loss",data=
loss_function_discriminator)

171 hf.create_dataset ("dicriminator_accuracy",data=
discriminator_accuracy)
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172 hf.close ()
474 def generateGAN(path, label, trained_model_path=None,epoch=’last’,
n_batches=10) :

175 weights = initialiseWeights ()

\77 z_vector = tf.placeholder (shape=[batch_size,z_size],dtype=tf.float32)

178 net_g_test = generator(z_vector, phase_train=True, reuse=False)
479

180 sess = tf.Session()

481 saver = tf.train.Saver ()

182

183 with tf.Session() as sess:

484 sess.run(tf.global_variables_initializer ())

185 saver .restore(sess, trained_model_path)

186

487 #generate data

188 #

189 for i in range(n_batches):

490 if i == 0:

191 #next_sigma = float(raw_input())

192 z_sample = np.random.normal (0, 0.33, size=[batch_size, z_size])

.astype(np.float32)
193 generated_data=sess.run(net_g_test ,feed_dict={z_vector:z_sample

B

194

195 else:

196 #next_sigma = float (raw_input ())

497 z_sample = np.random.normal (0, 0.33, size=[batch_size, z_size])
.astype(np.float32)

198 generated_samples=sess.run(net_g_test ,feed_dict={z_vector:
z_samplel})

199 generated_data=np.concatenate ((generated_data,
generated_samples), axis=0)

501 number_generated_instances=generated_data.shape [0]
502 label_array=create_array_labels (label ,number_generated_instances)

504 #generate the dataset

505 with hbpy.File(path+"/generated_data_array_{}_{}".format (epoch,str(
label))+’.h5’, ’w’) as hf:

506 hf.create_dataset ("generated_data",data=generated_data)

507 hf.create_dataset ("labels",data=label_array)

508 hf.close ()

511 def train_multiple_dataset_with_multiple_labels(list_data_sets_paths,\

512 list_dataset_names ,labels ,root_directory):
513 number_datasets_to_analyse=len(list_data_sets_paths)
514 number_labels_analysis=len(labels)

515 for dataset_index in range(list_data_sets_paths):
516 #get the name oof the dataset we are analysis
517 dataset_analysis=list_data_sets_paths[dataset_index]
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model=1ist_dataset_names [dataset_index]
for label_index in range (number_labels_analysis):

#get the labels of amnalysis
label=1labels [label_index]

#creare directories to store results and get the data

current_directory=root_directory
results_directory=current_directory+’/gans_results’
dataset_directory=results_directory+’/’+str (model)
label_directory=dataset_directory+’/’+str (label)
#Create directories

create_folder_in_path_check_folder_created(current_directory,
results_directory)
create_folder_in_path_check_folder_created(results_directory,
dataset_directory)
create_folder_in_path_check_folder_created(dataset_directory,
label_directory)

#

#get the data
dataset= hbpy.File(dataset_analysis, ’r’)

attributes_training=np.array(dataset.get(’attributes_training

attributes_testing=np.array(dataset.get(’attributes_testing’)

labels_training=np.array(dataset.get(’labels_training’))
labels_testing=np.array(dataset.get(’labels_testing’))

dataset.close ()
del dataset
del attributes_testing

#transform the data
boolean_mask=np.where(labels_training == label) [0]

#Get the instances that correspond with the labels
gans_data=attributes_training[boolean_mask] [:500]
gans_data=gans_data.reshape ((-1,32,32,32))

#Transform the data to 64x64x64 format
gans_data=double_voxels_dimension(gans_data)

#Training process
trainGAN (gans_data,label_directory,label)

T HHRAHHBAABHBRARHBBARH S END FUNCTIONS

HAHAHHAHAHBAH AR BAH BB RS BAHAHS

#Create the first and second models

#list_data_sets_paths=[’merged_dataset_o.21abe11ed_instances.h5’,\

#’merged_dataset_0.4labelled_instances.hb5’,’merged_dataset_0.6
labelled_instances.h5’,\
#’merged_dataset_o.81abe11ed_instances.h5’,’merged_dataset.hS’]
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list_data_sets_paths=[’merged_dataset_0.2labelled_instances.h5’,\

‘merged_dataset_0.4labelled_instances.hb5’,’merged_dataset_0.6
labelled_instances.h5’,\

’merged_dataset_0.8labelled_instances.h5’,’merged_dataset.h5’]

#name of the models we are going to use

#list_dataset_names=[’0.20 dataset’,’0.40 dataset’,’0.60 dataset’,’0.80
dataset’,\

#2full dataset ’]

list_dataset_names=[’0.20 dataset’,’0.40 dataset’,’0.60 dataset’,’0.80
dataset’,\

’full dataset’]

#labels of the dataset we are going to use
#labels=[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
labels=[0,1,2,3,4,5,6,7,8,9,10,11,12,13]

#train_multiple_dataset_with_multiple_labels(list_data_sets_paths,)\
#list_dataset_names ,labels,root_directory)

path_check_check_point=’G:/gans_project_root_directory/processed_data/\
gans_results/1/checkpoints_and_arrays/biasfree_3950.cptk’

result_generation=’G:/gans_project_root_directory/processed_data/
gans_results/1/new_generated_data’

generateGAN(result_generation, 1, trained_model_path=
path_check_check_point ,\
epoch="3900’ ,n_batches=10)

Listing 1: 3D GANs code

#load utils from keras

#Import Keras tools we use to implements GANs
import tensorflow as tf

from tensorflow import keras

; #Load utils from skleanr

from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split

#Load utils from standard libraries
import hbpy

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm

import seaborn as sns

sns.set_style (’white’)

class IIID_classification():

def __init__(self):
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self.horizontal_axis=16

self.vertical_axis=16

self.volume_axis=16

self.color_channels=3
self.input_size=(self.horizontal_axis,self.vertical_axis,\
self .volume_axis, self.color_channels)

self .number_classes=10

self.one_dimension_size=4096

#Training parameters Good combinations:(30,80),
self.epochs=2

self .batch=86

#batch_size=128, epochs=50
self.validation_split=0.20
self.learning_rate=0.001

#Normally 3D model are in hb5 format.Open h5 fles and separate the
instances
#within them into training and testing files.
def open_hb5(self,file_to_open=’aaa’):
with hbpy.File(file_to_open+".h5", ’r’) as hb:

attributes_training,labels_training=h5["X_train"]J[:],h5["
y_train"][:]

attributes_testing ,labels_testing= h5["X_test"][:], h5["
y_test"][:]

return attributes_training,labels_training,attributes_testing
>\
labels_testing

#In most of the datasets the 3D data is in 1D. So, we have to
process
#this data for its visualization and posterio analysis

#Find the rgb values of our dataset
def add_rgb_dimention(self, instance):
#Choose the color map we are using
scaler_map = cm.ScalarMappable (cmap="0ranges")

#Transform the instance. The -1 fits automatically the size to
the

#dimension

instance= scaler_map.to_rgba(instance) [:, : -1]

return instance

#Process to transform our 1D data to 3D data

def add_color_dimension(self, dataset_to_transform):
dataset_with_color_coordinates=np.ndarray ((\
dataset_to_transform.shape [0] ,self.one_dimension_size ,3))

#Loop through all the instance to add the color coordinates
for instance_index in range(dataset_to_transform.shape[0]):
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dataset_with_color_coordinates[instance_index]=\
self.add_rgb_dimention(dataset_to_transform[instance_index])

return dataset_with_color_coordinates

def reshape_dataset(self, dataset):
#convert our data set to a ’number of instance’ + 4D dimensional

dataset
# the ’-1’ automatically calculates the remaining dimension.
dataset = dataset.reshape(-1,self.horizontal_axis, self.

vertical_axis,\
self .volume_axis, self.color_channels)

return dataset

def one_hot_encode_labels(self,labels):
#convert target variable into one-hot
labels = keras.utils.to_categorical(labels,self.number_classes)

return labels

def Conv(self,filters=16, kermnel_size=(3,3,3),activation=’relu’,\
input_shape=None):
if input_shape:
return keras.layers.Conv3D(filters=filters,kernel_size=
kernel_size,\
padding=’Same’, activation=activation, input_shape=
input_shape)
else:
return keras.layers.Conv3D(filters=filters,b kernel_size=
kernel_size,\
padding=’Same’, activation=activation)

#3D convolutional networks require a tensor innput of five dimensions

#number of instances per batch, horizontal dimension , vertical
dimension,
#volumen dimension, number of color channels.
def convolutional_IIID_network(self):
#Common structure of 3CNN
## input layer
input_layer= keras.layers.Input ((self.input_size))

## Add the 3D convolutional layers with different characteristics
#The parenthesis after the layer connect the previous layer with
#the layer we have already created.

conv_layerl = keras.layers.Conv3D(filters=8, kernel_size=(3, 3,

activation=’relu’) (input_layer)

#Add more 3D convolutional layers and 3D maxpool layers.
conv_layer2 = keras.layers.Conv3D(filters=16, kernel_size=(3, 3,
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3) 5\

activation=’relu’) (conv_layerl)

## add max pooling to obtain the most imformatic features

pooling_layerl = keras.layers.MaxPool3D(pool_size=(2, 2, 2))\

(conv_layer2)

conv_layer3 = keras.layers.Conv3D(filters=32, kernel_size=(3, 3,
3) 5\

activation=’relu’) (pooling_layerl)

conv_layer4 = keras.layers.Conv3D(filters=64, kernel_size=(3, 3,
3) 5\

activation=’relu’) (conv_layer3)

pooling_layer2 = keras.layers.MaxPool3D(pool_size=(2, 2, 2))\

(conv_layer4d)

#perform batch normalization on the convolution outputs before
feeding\

#it to MLP architecture

pooling_layer2 = keras.layers.BatchNormalization() (pooling_layer?2
)

flatten_layer = keras.layers.Flatten() (pooling_layer2)

#Fully connected layer of top of the convolutions to classify the
model

#First transform the results of the convoluation into a 1D format

dense_layerl = keras.layers.Dense(units=2048, activation=’relu’)\

(flatten_layer)

dense_layerl = keras.layers.Dropout (0.4) (dense_layerl)

dense_layer2 = keras.layers.Dense(units=512, activation=’relu’)\

(dense_layer1l)

dense_layer2 = keras.layers.Dropout (0.4) (dense_layer2)

output_layer = keras.layers.Dense(units=self.number_classes,)\

activation=’softmax’)\

(dense_layer2)

## define the model with input layer and output layer

model=keras.models.Model (inputs=input_layer , outputs=output_layer
)

#Compile the model

model.compile (loss="categorical_crossentropy",\

optimizer=keras.optimizers.Adadelta(lr=0.1) ,metrics=["accuracy"])

return model
def convolutional_IIID_network_other_Structure(self):

#Normal feed-forward structure
cnn_three=keras.models.Sequential ()

#USe the fucntion Conv that we create before to cast the 3D
#convolutional network
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cnn_three.add(self.Conv(8, (3,3,3), input_shape=self.input_size))
cnn_three.add(self.Conv (16, (3,3,3)))

#model .add (BatchNormalization ())
cnn_three.add (keras.layers.MaxPool3D())
#cnn_three.add(keras.layers.Dropout (0.25))

#

cnn_three.add(self.Conv (32, (3,3,3)))
cnn_three.add(self.Conv (64, (3,3,3)))
cnn_three.add(keras.layers.BatchNormalization())
cnn_three.add(keras.layers.MaxPool3D())
cnn_three.add(keras.layers.Dropout (0.25))

#Fully connected layer of top of the convolutions to classify the

model

#First transform the results of the convoluation into a 1D format
cnn_three.add(keras.layers.Flatten())

#Add more fully connected layers
cnn_three.add(keras.layers.Dense (4096, activation=’relu’))
cnn_three.add(keras.layers.Dropout (0.5))

cnn_three.add (keras.layers.Dense (1024, activation=’relu’))
cnn_three.add(keras.layers.Dropout (0.5))

#The input layer contains as many as neurons as different classes
cnn_three.add(keras.layers.Dense(self.number_classes,activation=’

softmax’))

#Compile the model
cnn_three.compile (optimizer=’adam’,loss = "

categorical_crossentropy",\

def

3) 5\

metrics=["accuracy"])

#return the model
return cnn_three

voxnet (self):

#Common structure of 3CNN

## input layer

input_layer= keras.layers.Input ((self.input_size))

## Add the 3D convolutional layers with different characteristics
#The parenthesis after the layer connect the previous layer with
#the layer we have already created.

conv_layerl = keras.layers.Conv3D(filters=32, kernel_size=(5,5,5)

strides=(2,2,2) ,activation=’relu’) (input_layer)

#Add more 3D convolutional layers and 3D maxpool layers.
conv_layer2 = keras.layers.Conv3D(filters=32, kernel_size=(3, 3,

strides=(1,1,1) ,activation="relu’) (conv_layerl)

## add max pooling to obtain the most imformatic features
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pooling_layerl = keras.layers.MaxPool3D(pool_size=(2, 2, 2))\
(conv_layer2)

#

flatten_layer = keras.layers.Flatten() (pooling_layerl)

#Fully connected layer of top of the convolutions to classify the

model
#First transform the results of the convoluation into a 1D format
dense_layerl = keras.layers.Dense(units=128, activation=’relu’)\

(flatten_layer)

dense_layerl = keras.layers.Dropout (0.5) (dense_layerl)
output_layer = keras.layers.Dense(units=self.number_classes,\
activation=’softmax’) (dense_layerl)

## define the model with input layer and output layer
model=keras.models.Model (inputs=input_layer ,outputs=output_layer)

#Compile the model

model.compile (loss="categorical_crossentropy",\

optimizer=keras.optimizers.SGD(lr=self.learning_rate ,momentum
=0.9) ,\

metrics=["accuracy"])

return model

#Fucntion to create a callback to stop the training process given a
set
#of characteristics
def generate_stopping_criteria(self, monitor_metric=’val_accuracy’,\
callback_patience=20):

#create the callback object to stop the training process.
Patience

#is the number of iterations without improvement that have to
happen to

#stop the training process. Monitor is the performance measure
that we

#consider to stop the training process.

stopping_call_back=keras.callbacks.EarlyStopping(monitor=
monitor_metric,\

mode=’max’ ,verbose=1,patience=callback_patience)

#return the callback

return stopping_call_back

#Fucntion to save our model given a specific criteria
def generate_model_saving_criteria(self, monitor_metric=’val_accuracy
5%
model_name=’best_model’):
#generate hte name of the hb5 that will store the best model
model=model_name+’.h5’
#generate the callback to store the best model. The monitor
metric
#is the measure that we want to maximize with out model
saving_call_back=keras.callbacks.ModelCheckpoint (model,\
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monitor=monitor_metric ,mode=’max’,verbose=1,save_best_only=True)
#return the call back
return saving_call_back

# Train model with the parametrs indicated in the constructor
def train_model (self, model_to_train, attributes_training,
labels_training,\
callback_1list):
#Train the model
train_model=model_to_train.fit(x=attributes_training,y=
labels_training,\
batch_size=self.batch, epochs=self.epochs,\
validation_split=self.validation_split, verbose=1, shuffle=True,\
callbacks=callback_list)
#Return the trained model
return train_model

#The following fucntion saves the model that we are training.
def save_smodel (self, model_to_save):
saved_model=model_to_save.save(’3d_classifier.h5’)

#Evaluate the model after the training process.
def model_evaluation(self, model_to_evaluate, attributes_testing,\
labels_testing, path=’path’,title=’confusion_matrix’):
#Predict the labels using the model we trained
class_prediction=model_to_evaluate.predict(attributes_testing)
#Because the model is one hot encoded we have and we used softmax
#activation fucntion
class_prediction=np.argmax(class_prediction, axis=1)

#Calculate the accuracy score of our model.
accuracy_mode1=round(accuracy_score(class_prediction,
labels_testing) ,3)

#Confusin matrix. The confucion matrix will indicate which labels
are

#hard to predict and other potential problem in out model.

confusion_matrix_model=confusion_matrix(labels_testing,
class_prediction)

#transform the numpy array to a pandas dataframe
confusion_matrix_model=pd.DataFrame(confusion_matrix_model,\
index = range(self.number_classes),\

columns = range(self.number_classes)).astype(’int’)

#Plot the confusion matrix

plt.figure(figsize=(20,20))
sns.heatmap(confusion_matrix_model, annot=True)
plt.title(title+’ ’+’accuracy: ’+str(accuracy_model))
plt.savefig(path+’.png’)

plt.clf ()

#return the model evaluation object
return accuracy_model
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#PLot the evolution of the training process
def plot_validation_score(self, model, path=’path’,\
title=’validation_training’):

#We are going to plot the training and validation scores. We will

create
#a .png create the figure we are going to plot our accuracy and
the
#value of the loss fucntion
plt.figure(figsize=[20,20])
#Plot the accuracy evolution
plt.plot (model.history[’accuracy’])
plt.plot (model.history[’val_accuracy’])
plt.title(’Model training and validation_’+title)
plt.ylabel (’performance’)
plt.xlabel (’epoch’)
plt.legend([’training set’,’validation set’], loc=’upper left’)

#save figure we created
plt.savefig(path+’.png’)
plt.clf ()

#The following function is to test the performance of our model in
different

#set of our training set with different sizes.

#This could be useful to evaluate the performance of the model in
when

#we have small datasets.

#list_of _models is a list that contains the models we are using
##list_of_models is a list that contains the splits or reduction of
the

#dataset we are using

def dataframe_record_experiment_results(self,list_of_models,
list_of_splits,\

attributes_training,labels_training,attributes_testing,labels_testing

>\

number_data_splits=3,random_seed=0) :
#Get the number of models
number_models=len(list_of_models)

#Get the dataset reduction we want to apply
number_data_splits=len(list_of_splits)

#create an array to store the results
results_array=np.zeros ((number_data_splits ,number_models))

#loop through the models and
for model_index in range (number_models):
#loop through the splits
for split_index in range (number_data_splits):
#Know the model we are using and how much are we gonna
reduce
#the dataset
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data_division=list_of_splits[split_index]
model=1ist_of_models [model_index]

#reduce the dataset

attributes_reduced, attributes_discard,\
labels_reduced, labels_discard = train_test_split(
attributes_training, labels_training,)\
test_size=data_division, random_state=random_seed)

#Train, evaluate and plot the model
model_train= self.\
train_model (model, attributes_reduced, labels_reduced)

#Evaluate the model

performance=self .model_evaluation (model,\
attributes_testing,labels_testing,\
title=’confusion_matrix_’+’model_’+str(model_index)+’_’+\
‘used_data_’+str(data_division))

#Plot the evoluation of the validation score and the
#accuracy

self .plot_validation_score(model_train,\
file_name=’validation_training’+’model_’+str(model_index)

’used_data_’+str(data_division))

results_array[split_index ,model_index]=performance

#Issue a csv file with the result of our model in different data
#reductions
pd.DataFrame (results_array).to_csv(’results.csv’)

return results_array

Listing 2: 3D Deep Learning classifiers

#load utils from keras

#Import Keras tools we use to implements GANs
import tensorflow as tf

from tensorflow import keras

#Load utils from skleanr
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split

#Load utils from standard libraries

import hb5py
import math

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm
import seaborn as sns
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sns.set_style(’white’)
import os

#import the code we created
from IIId_classifiers import IIID_classification

#
HAHAHAHBAHAHRAH AR AR BB AH RS R AR AR BB RS RSB AR AR R AR AH BB A B RS R AR AR BR B AR RSB H AR BB AHHH

#fucntion to create folders in a given path

def get_list_elements_without_pattern_not_current_directory(
directory_to_search):
#Comprehension list that by given a directory, explores
files= [element for element in os.listdir(directory_to_search)]
#
return files

def create_folder_in_path_check_folder_created(path_creation,

path_to_create):
#
directories_in_directory_where_eant_create=\
get_list_elements_without_pattern_not_current_directory(path_creation
)
#
directories_path_in_directory_where_eant_create=\
[path_creation+’/’+path for path in \
directories_in_directory_where_eant_create]
#
if path_to_create not in
directories_path_in_directory_where_eant_create:

#

os.mkdir (path_to_create)

HARHHARHHBRBH B AR H B R AR HH AR BB AR AHBASH B AR S BB A SRR A H B R AR H B A SRR AR AH B RS H B AR S B R A HHBHHS

#Load the dataset

def analysis_data_and_class_creation(data_set_name,epochs=1000, batchs
=32,\

validation=0.50,learning_rate=0.001):
#0pen the hb5 file with the function within the class
dataset= hbpy.File(data_set_name, ’r’)
attributes_training=np.array(dataset.get(’attributes_training’))
attributes_testing=np.array(dataset.get(’attributes_testing’))
labels_training=np.array(dataset.get(’labels_training’))
labels_testing=np.array(dataset.get(’labels_testing’))
dataset.close ()

#Transform the dataset
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number_voxels_columns=attributes_training.shape[1]

#

dimension_axis=int (round (math.pow (number_voxels_columns ,1/3.)))

#

attributes_training=attributes_training.reshape(-1,dimension_axis,\

dimension_axis ,dimension_axis ,1)
#

attributes_testing=attributes_testing.reshape(-1,dimension_axis,\

dimension_axis ,dimension_axis ,1)
#

number_different_labels=len(np.unique(labels_training))

#Load the class
IIID_classifier= IIID_classification ()

IIID_classifier.horizontal_axis=dimension_axis
ITIID_classifier.vertical_axis=dimension_axis
IIID_classifier.volume_axis=dimension_axis

IIID_classifier.color_channels=1

ITID _classifier.input_size=(IIID_classifier.horizontal_axis,\
IIID_classifier.vertical_axis,IIID_classifier.volume_axis,\

IIID _classifier.color_channels)

ITIID_classifier . .number_classes=number_different_labels
IIID_classifier.one_dimension_size=number_voxels_columns

#Training parameters Good combinations:(30,80),

IIID_classifier.epochs=epochs
IIID_classifier.batch=batchs
#batch_size=128, epochs=50

ITID_classifier.validation_split=validation
IIID_classifier.learning_rate=learning_rate

#0ne hot encode training and testing labels
labels_training=labels = keras.utils.to_categorical(labels_training)

#return the classifier object
return IIID_classifier

HHHHHHHRRAAHBRRAH S TRAINING
HARHHHARHHHAAHHBRAHHHHRH

HAHHHHAH BB AR HHBBHAHHHH TRAIN MODEL I
HEHHHHRAHFHBRAH SRS

#Fucntion to analyse a large number of dataset and store the results of a

chosen

#model into a csv. Hence, evaluate the perfromance of the model in

multiple

#datasets. Addtionally we can repeat the evaluation process several times

to

#calculate the average and std measure of the performance.
def multiple_data_model_analysis(list_datasets, list_titles, list_models

>\

number_analysis_per_dataset=5,patience=50,

csv_title=’csv_multiple_data’)
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#create a directory to save the results

#get current directory

current_directory=os.getcwd ()

#directory we will create
directory_results=current_directory+’/’+’results_analysis_datasets’
#create the dataset

create_folder_in_path_check_folder_created)\

(current_directory ,directory_results)

#Basic analysis of the number of data we have to analyse
number_sets_to_analyse=len(list_data_sets)
number_model_analysis=len(model_names)

#Create an array to store the results. Every column
#is a different dataset

results_array=np.zeros ((number_model_analysisx*4,
number_sets_to_analyse))

#Create and 3d classifier object with the chracteristics of our data
IIID_classifier=analysis_data_and_class_creation (\

list_data_sets [number_model_analysis-1],epochs=1000, batchs=32,\
validation=0.50, learning_rate=0.001)

#Loop through all the datasets
for dataset_index in range(number_sets_to_analyse):

#Get the dataset of analysis
data_set_of_analysis=1list_data_sets[dataset_index]

#Get the title/label of the dataset we are analysing.
#The title will appear on the confusion matrix, table of
#results and other visualizations.
title_data_analysis=titles[dataset_index]

print ’dataset: ’+’ ’+data_set_of_analysis+’ ’+

title_data_analysis

)

#create a numpy array to store the resuls of the model

#on the dataset after a number of repetitions
results_model_array=np.zeros(number_analysis_per_dataset)
results_model_accuracy_array=np.zeros(number_analysis_per_dataset

#repeat the analysis as inidcated in ’number_analysis_per_dataset

for analysis_index in range(number_analysis_per_dataset):
print ’analysis_number: ’+str(analysis_index)
#load the classification model
IIID_model _I=IIID_classifier.voxnet ()

#load the data from dataset
dataset= hbpy.File(data_set_of_analysis,’r’)

attributes_training=np.array(dataset.get(’attributes_training

attributes_testing=np.array(dataset.get(’attributes_testing’)
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))

labels_training=np.array(dataset.get(’labels_training’))
labels_testing=np.array(dataset.get(’labels_testing’))
dataset.close ()

#Transform the dataset
number_voxels_columns=attributes_training.shape[1]

#get the one of the dimensions of the cuboid grid
dimension_axis=int (round (math.pow (number_voxels_columns ,1/3.)

#transfrom the attributes
attributes_training=attributes_training.reshape(—l,

dimension_axis,\

dimension_axis ,dimension_axis ,1)
#testing attributes
attributes_testing=attributes_testing.reshape (-1,

dimension_axis,\

dimension_axis ,dimension_axis ,1)
#0ne hot encode training and testing labels
labels_training=labels=keras.utils.to_categorical(

labels_training)

#Generate the callbacks for saving the model
saving=IIID_c1assifier.generate_model_saving_criteria\
(monitor_metric=’val_accuracy’,model_name=\
directory_results+’/’+’best_model’+\

> ’+title_data_analysis+’ ’+str(analysis_index))

#Generate callbacks to stop the training porcess. patience
#is the number of iterations without an improvements
stopping=IIID_classifier.generate_stopping_criteria)
(monitor_metric=’val_accuracy’,callback_patience=patience)
#generate a list with the callbacks functions we just created
list_callbacks=[saving,stopping]

#Traning process

IIID_model_I_train= IIID_classifier.\
train_model (IIID_model_I, attributes_training,\
labels_training,list_callbacks)

#Calculate the accuracy and plot the evalution of the
#training and validation performance throughout the
#training process for both models.
IIID_model_I_accuracy=\

IIID _classifier .model_evaluation\
(IIID_model_I,attributes_testing,labels_testing)

#get the max validation score during the training process
max_val_score=max (IIID_model_I_train.history[’val_accuracy’])

#append the max validation score to the array
results_model_array[analysis_index]=max_val_score
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#plot the evolution of the validation and training score
IIID_classifier.plot_validation_score(IIID _model_I_train,\
path=directory_resu1ts+’/’+’voxnet ’+title_data_analysis+’ ~’

str (analysis_index), title=’voxnet ’+title_data_analysis+’ °’
str (analysis_index))

#Get the model accuracy and plot the confusion matrix on the
#training set

IIID_model_I_accuracy=\
IIID_classifier.model_evaluation(IIID_model_I,

attributes_testing,\

labels_testing ,path=\

directory_results+’/’+’confusion matrix voxnet ’+\
title_data_analysis+’ ’+str(analysis_index), title=\
>confusion matrix voxnet ’+title_data_analysis+’ ’+str(

analysis_index))

#Store the model accuracy
results_model_accuracy_array[analysis_index]=

ITID_model_I_accuracy

del IIID_model_I

del IIID_model_I_train
del IIID_model_I_accuracy
del list_callbacks

#calculate the mean and std of the obtained results
mean_val_accuracy=round (np.mean(results_model_array) ,3)
std_val_accuracy=round (np.std(results_model_array) ,3)
mean_accuracy=round (np.mean(results_model_accuracy_array) ,3)
std_accuracy=round(np.std(results_model_accuracy_array) ,3)

#Move the results to the results array
results_array[0,dataset_index]=mean_va1_accuracy
results_array[1,dataset_index]=std_val_accuracy
results_array[2,dataset_index]=mean_accuracy
results_array[3,dataset_index]=std_accuracy

#transform the numpy array with the results into a dataframe
dataframe_results=pd‘DataFrame(data=resu1ts_array,index=[’mean
validation’,\

’std validation’,’mean accuracy’,’std_accuracy’],columns=
list_datasets)

#transform the data frame into csv
export_csv=dataframe_results.to_csv(\
directory_results+’/’+csv_title+’.csv’,index=True,header=True)

HARHBARAHHBRABHBRAAHBRAHBRARBBARABHBARRBAARBBABHBABHBRAHBRARBRAR BB BB R BAABHBRAAHBHS
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#Create the first and second models
list_data_sets=[’merged_dataset_0.2labelled_instances.h5’,\
’merged_dataset_o.41abelled_instances.h5’,\
’merged_dataset_0.6labelled_instances.h5’,\
’merged_dataset_o.81abelled_instances.h5’,’merged_dataset.hB’]

titles=[’0.20 dataset’,’0.40 dataset’,’0.60 dataset’,’0.80 dataset’,\
>full dataset’,]

; model_names=[’voxnet’]

multiple_data_model_analysis(1ist_data_sets,titles,model_names,\
number_analysis_per_dataset=5,patience=30, csv_title=’csv_multiple_data’)

Listing 3: Multiple 3D data analysis

#Import standard libraries
import os

import numpy as np

import hbpy

import matplotlib.pyplot as plt
import open3d as o03d

from mpl_toolkits.mplot3d import Axes3D
import numpy as np

import matplotlib.pyplot as plt
plt.style.use(’seaborn-white’)
import scipy.io as io

import scipy.ndimage as nd
import random

#functions we are using

#fucntion to manage directories

def half_voxels_dimension(voxel_array_to_transform):
number_voxels=voxel_array_to_transform.shape [0]
#Get the number of voxels per dimension
one_dimension_voxels=voxel_array_to_transform.shape[1]
half_dimension=int (one_dimension_voxels/2)

#create an array to store the transformed instances
voxel_array_transformed=np.zeros((number_voxels,half_dimension,\
half_dimension ,half_dimension,1))
#loop through all the instances in the array we want to transfrom
for voxel_tranformation_index in range(number_voxels):
#get the array that we want to transform
voxel_to_transform=voxel_array_to_transforml[
voxel_tranformation_index]
#modify the voxels
voxel_to_transform=np.pad(voxel_to_transform, (0, 0),\
’constant’,constant_values=(0, 0))
#Square voxels
voxel_to_transform=nd.zoom(voxel_to_transform,)\
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(0.5, 0.5, 0.5), mode=’constant’, order=0)\
.reshape ((half_dimension ,half_dimension,half_dimension,1))
#Add the transformed voxel to the array that contains the
transformed
#voxels
voxel_array_transformed[voxel_tranformation_index]=\
voxel_to_transform
#return the modified array
return voxel_array_transformed

double_voxels_dimension(voxel_array_to_transform):
number_voxels=voxel_array_to_transform.shape [0]

#Get the number of voxels per dimension
one_dimension_voxels=voxe1_array_to_transform.shape[1]
double_dimension=one_dimension_voxels*2

print (double_dimension)

#create an array to store the transformed instances
voxel_array_transformed=np.zeros ((number_voxels ,hdouble_dimension,\
double_dimension ,double_dimension,1))

#loop through all the instances in the array we want to transfrom
for voxel_tranformation_index in range(number_voxels):
#get the array that we want to transform
voxel_to_transform=voxel_array_to_transforml[
voxel_tranformation_index]
#modify the voxels
voxel_to_transform=np.pad(voxel_to_transform, (0, 0),\
’constant’,constant_values=(0, 0))
#Square voxels
voxel_to_transform=nd.zoom(voxel_to_transform,\
(2, 2, 2), mode=’constant’, order=0)\
.reshape ((double_dimension ,double_dimension,double_dimension,1))
#Add the transformed voxel to the array that contains the
transformed
#voxels
voxel_array_transformed[voxel_tranformation_index]=\
voxel_to_transform
#return the modified array
return voxel_array_transformed

def get_list_elements_pattern_not_current_directory(directory_to_search,

pattern):

#Comprehension list that by given a directory, explores
pattern_files= [element for element in os.1istdir(directory_to_search
) if\

element .endswith("."+pattern)]

#

return pattern_files

def get_list_elements_without_pattern_not_current_directory(

directory_to_search):
#Comprehension list that by given a directory, explores
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files= [element for element in os.listdir(directory_to_search)]
#
return files

#funntion to get automatically the path of a given file in the curren
directory

7 def generate_directory_path_contains_current_directory(folder_name):

#Get current directoy

current_directory=os.getcwd ()

#Create a directory path to explore
directory_to_explore=current_directory+’/’+f01der_name
#Create a directory path to explore

return directory_to_explore

def create_folder_in_path_check_folder_created(path_creation,

path_to_create):
#
directories_in_directory_where_eant_create=\
get_list_elements_without_pattern_not_current_directory(path_creation
)
#
directories_path_in_directory_where_eant_create=\
[path_creation+’/’+path for path in \
directories_in_directory_where_eant_create]
#
if path_to_create not in
directories_path_in_directory_where_eant_create:

#

os.mkdir (path_to_create)

#function to plot the loss functions
def loss_gans_plot(evolution_loss_function_discriminator,\
evolution_loss_function_generator ,evolution_accuracy,results_directory,
label):
plt.figure(figsize=(20,20), dpi=80)

#First subgraph with discriminator 1loss

plt.rc(’xtick’,labelsize=30)

plt.rc(’ytick’,labelsize=30)

plt.subplot (3, 1, 1)
plt.plot(evolution_loss_function_discriminator,’darkorange’, 1lw=0.4)
plt.yscale(’log’)

plt.title("Evolution of Discriminator’s Loss", fontsize=30)
plt.xlabel (’epochs’,fontsize=30)

plt.ylabel ("Discriminator’s Loss (log scale)",fontsize=30)

#Second subgraph with generator loss

plt.subplot (3, 1, 2)
plt.plot(evolution_loss_function_generator,’blue’, 1lw=0.4)
plt.title("Evolution of Generator’s Loss", fontsize=30)
plt.rc(’xtick’,labelsize=30)

plt.rc(’ytick’,labelsize=30)
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def

plt.xlabel (’epochs’,fontsize=30)
plt.ylabel ("Generator’s Loss",fontsize=30)

#Third subgraph with accuracy

plt.subplot (3, 1, 3)
plt.plot(evolution_accuracy,’forestgreen’,lw=0.45)
plt.title("Evolution of Discriminator’s Accuracy", fontsize=30)
plt.rc(’xtick’,labelsize=30)

plt.rc(’ytick’,labelsize=30)

plt.xlabel (’epochs’,fontsize=30)

plt.ylabel ("Discriminator’s Accuracy",fontsize=30)
#plt.plot(evolution_loss_function_generator, lw=1)

#Space between subgraphs in the main graph
plt.subplots_adjust (hspace=0.4)

#plt.show ()
plt.savefig(results_directory+’/ _evolution_loss_accuracy’+str (label))

get_loss_data_from_checkpoints(data_directory,checkpoint_to_append):
evolution_loss_function_discriminator=[]
evolution_loss_function_generator=[]

evolution_accuracy=[]
elements_to_explore=[’dicriminator_loss’,’generator_loss’,\
’dicriminator_accuracy’]
number_elements_to_explore=len(elements_to_explore)

for elements_to_explore_index in range (number_elements_to_explore):
element_to_explore=elements_to_explore[elements_to_explore_index]

for checkpoint_index_dis in range(len(checkpoint_to_append)):
checkpoint=checkpoint_to_append[checkpoint_index_dis]
#get the dataset
data_path=data_directory+’/evolution_loss_functions’+
checkpoint+’.h5”’

dataset= hbpy.File(data_path, ’r’)
loss_values=np.array(dataset.get (element_to_explore))
dataset.close ()

del dataset

for information in loss_values:

if elements_to_explore_index==0:

evolution_loss_function_discriminator.append(
information)

elif elements_to_explore_index==1:
evolution_loss_function_generator.append(information)

elif elements_to_explore_index==
evolution_accuracy.append(information)

return evolution_loss_function_discriminator,
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evolution_loss_function_generator ,evolution_accuracy

def display_generated_data(data_path,list_epochs,\
epoch_in_list_to_display=0,instance_to_display=0,binarise=True,
reduce_voxel=False):
#get the path of the dataset we want
epoch_to_analyse=1list_epochs[epoch_in_list_to_display]

#get the directory of the epoch
generated_data_path=data_path+’/generated_data_array_’+
epoch_to_analyse+’.h5’

#Get the dataset

dataset= hbpy.File(generated_data_path, ’r’)
generated_data=np.array(dataset.get(’generated_data’))
dataset.close ()

#get the intance of the set we want to display
generated_instance=generated_datal[instance_to_display]

if binarise == True:
generated_instance=np.where (generated_instance >=0.5,1,0)

if reduce_voxel==True:
generated_instance=nd.zoom(generated_instance,\
(0.5, 0.5, 0.5), mode=’constant’, order=0)\

#information about the reshape of the instance to displance and

reshaping
generated_instance_shape_voxel=generated_instance.shape [0]

generated_instance=generated_instance.reshape ((\

generated_instance_shape_voxel ,generated_instance_shape_voxel,h\

generated_instance_shape_voxel))

#plot

fig=plt.figure ()

ax = fig.gca(projection=’3d’)
ax.grid(False)
plt.axis(’off’)

ax.voxels (generated_instance ,facecolors=’aqua’, edgecolor="k")

plt.show ()

def original_data(data_path,list_epochs,\

label=0, instance_to_display=0,binarise=True,reduce_voxel=False):
#get the directory of the epoch
generated_data_path=data_path

#Get the dataset

dataset= hbpy.File(generated_data_path, ’r’)
generated_data=np.array (dataset.get (’attributes_training’))
labels_training=np.array(dataset.get(’labels_training’))
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dataset.close ()

#filter by label
filter=np.where(labels_training==1label)
generated_data=generated_data[filter]
labels_training=labels_training[filter]

#get the intance of the set we want to display
generated_instance=generated_datal[instance_to_display]

generated_instance=generated_instance.reshape ((32,32,32))

if binarise == True:
generated_instance=np.where (generated_instance >=0.5,1,0)

if reduce_voxel==True:
generated_instance=nd.zoom(generated_instance,\
(0.5, 0.5, 0.5), mode=’constant’, order=0)\

#information about the reshape of the instance to displance and
reshaping

generated_instance=np.pad(generated_instance, (0, 0),\
’constant’,constant_values=(0, 0))

#Square voxels
generated_instance=nd.zoom(generated_instance,\

(2, 2, 2), mode=’constant’, order=0)\

.reshape ((64,64,64,1))

generated_instance_shape_voxel=generated_instance.shape [0]

generated_instance=generated_instance.reshape ((\
generated_instance_shape_voxel ,generated_instance_shape_voxel,\
generated_instance_shape_voxel))

#plot

fig=plt.figure ()

ax = fig.gca(projection=’3d’)

ax.grid (False)

plt.axis (’off’)

ax.voxels (generated_instance ,facecolors=’aqua’, edgecolor="k")
plt.show()

def get_path_generated_data(data_path,list_epochs,\
epoch_in_list_to_display=0,instance_to_display=0,binarise=True,
reduce_voxel=False):
#get the path of the dataset we want
epoch_to_analyse=1list_epochs[epoch_in_list_to_display]

#get the directory of the epoch
generated_data_path=data_path+’/generated_data_array_’+
epoch_to_analyse+’.hb5’
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280 return generated_data_path

281

282 #function to merge dataset. Te original datasets and the generated one

283 def merge_dataset_with_augmented (augmented_path,
path_dataset_to_be_augmented,\

o84 filters=[1,2,3], filter=True, label=2, reduce_voxels=True):

286 #get the dataset we want to increase and the subset within it

287 dataset= hbpy.File(path_dataset_to_be_augmented, ’r’)

288 attributes_training=np.array(dataset.get(’attributes_training’))
289 attributes_testing=np.array(dataset.get(’attributes_testing’))

290 labels_training=np.array(dataset.get(’labels_training’))
291 labels_testing=np.array(dataset.get(’labels_testing’))
292 dataset.close ()

294 #Loop through all the augmented dataset and add the to the original
slelt:
295 #including the labels

297 augmented_dataset= hbpy.File(augmented_path, ’r’)
298 generated_data=np.array (augmented_dataset.get("generated_data"))
299 labels_generated_data=np.array(augmented_dataset.get("labels"))

302 print (generated_data.shape)

304 if filter == True:

305 generated_data=generated_data[filters]

306 number_instances=generated_data.shape [0]

307 label_array=np.full ((number_instances), label)
308 print (label_array)

309 labels_generated_data=label_array

310 print (labels_generated_data)

312 generated_data=generated_data.reshape ((generated_data.shape[0],
generated_data.shape[1],generated_data.shape[2],generated_data.shape
[31))

313 #Reduce the size of the generated data

314 if reduce_voxels==True:
315 generated_data=half_voxels_dimension(generated_data)

317 generated_data=generated_data.reshape ((generated_data.shape [0] ,32768)
)

318 print (attributes_training.shape)

319 print (generated_data.shape)

320 #concatenate the data sets

321 attributes_training=np.concatenate((attributes_training,
generated_data) ,axis=0)
322 labels_training=np.concatenate ((labels_training,labels_generated_data

) ,axis=0)

324 #safety prints
325 print (generated_data.shape)



C. Code 80

326 print (labels_generated_data.shape)

327 print (attributes_training.shape)

328 print (labels_training.shape)

329 unique, counts = np.unique(labels_training, return_counts=True)
330 print (unique)

331 print (counts)

332

333 #save the dataset we have augmented

335 with hbpy.File(path_dataset_to_be_augmented, ’w’) as hf:

336 hf.create_dataset(’attributes_training’,data=attributes_training)
337 hf.create_dataset (’attributes_testing’,data=attributes_testing)
338 hf.create_dataset (’labels_training’,data=labels_training)

339 hf.create_dataset(’labels_testing’,data=1abels_testing)

340 hf.close ()

342 def merge_dataset_with_original(original_dataset_path,
path_dataset_to_be_augmented,\
343 label=0, filters=[1,2,3], filter=True, reduce_voxels=True):

345 #get the dataset we want to increase and the subset within it
346 dataset= hbpy.File(path_dataset_to_be_augmented, ’r’)

347 attributes_training=np.array(dataset.get(’attributes_training’))

348 attributes_testing=np.array(dataset.get(’attributes_testing’))

349 labels_training=np.array(dataset.get(’labels_training’))

350 labels_testing=np.array(dataset.get(’labels_testing’))

351 dataset.close ()

352

353 #get the aumented data of a specific label

354 augmented_dataset= hbpy.File(original_dataset_path, ’r’)

355 generated_data=np.array(augmented_dataset.get(’attributes_training’))

356 labels_generated_data=np.array(augmented_dataset.get(’labels_training
’))

357 augmented_dataset.close ()

358

359 filter_I=np.where(labels_generated_data==label)

360 generated_data=generated_datal[filter_I]

361 labels_generated_data=labels_generated_data[filter_I]

363 generated_data=generated_data[filters]
364 labels_generated_data=labels_generated_data[filters]

366 #concatenate the data sets

367 attributes_training=np.concatenate((attributes_training,
generated_data) ,axis=0)

368 labels_training=np.concatenate ((labels_training,labels_generated_data
) ,axis=0)

370 #safety prints

371 print (generated_data.shape)

372 print (labels_generated_data.shape)
373 print (attributes_training.shape)
374 print (labels_training.shape)
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375 unique, counts = np.unique(labels_training, return_counts=True)
376 print (unique)

377 print (counts)

378

379 #save the dataset we have augmented

380 with hbpy.File(path_dataset_to_be_augmented, ’w’) as hf:

381 hf.create_dataset(’attributes_training’,data=attributes_training)
382 hf.create_dataset (’attributes_testing’,data=attributes_testing)
383 hf.create_dataset (’labels_training’,data=labels_training)

384 hf.create_dataset(’labels_testing’,data=labels_testing)

385 hf.close ()

386

387

388 HH#HHHAAAHFHBRAHEH END OF FUNCTIONS

HEHEHHEH A H AR HEHHEHES
389
390
391 #
HHHSHAH S HSHHSH S A SRS H A B HSH S S S UGBS SRS S SHS B H USRS B SH GBS S USRS S B S H S USRS H 1S

302 HHHAHHBHAAFHHHHAH PATHS/DIRECTORIES
HAHAHHAHRAH A RAHRAHHS

393

394 #visualization tool for generated data and for the evalution of the loss

395 #functions

396

397 #Set up directories

398 #root directory

3909 current_directory=os.getcwd ()

400

401 #directory where the data is stored

402 data_directory=’G:/gans_project_root_directory/processed_data/
gans_results_0.2/7/checkpoints_and_arrays’

403

404 #from the data directory get the name of our data

105 data_names=\

106 get_list_elements_pattern_not_current_directory(data_directory,’h5’)

407

108 #set up directory where we are going to save the visualisations

109 visualizations_directory=’G:/gans_project_root_directory/visualizations/
visualization_IIID_figures/generation_visualization/2’

410

411 if not os.path.exists(visualizations_directory):

412 os.makedirs (visualizations_directory)

413

414 loss_visualizations_directory=’G:/gans_project_root_directory/
visualizations/loss_functions/1lr01’

415 if not os.path.exists(loss_visualizations_directory):

416 os.makedirs (loss_visualizations_directory)

417

418 new_generations_directory=’G:/gans_project_root_directory/processed_data/
gans_results/0_0.9_1r’

419 if not os.path.exists(new_generations_directory):
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os.makedirs (new_generations_directory)

path_dataset_to_merge=’G:/gans_project_root_directory/processed_data/
voxel_datasets’

#
HUHHB SR A H BB SR H BB SR HH B S GHHHBH BB H B SR HH B S HHH BB SR H B RS H B RS HH B S S H B S S HH B 44

#open the dataset and get the information we want
H###H#

#epochs to get from a data set
epoch_to_get=[’5000"]

HARHHHARBHAHARHHS VISUALISATION GENERATED
HAHAHHAHAHHAHRAHAHBAHS

display=True

if display ==True:
display_generated_data(data_directory,epoch_to_get ,\
epoch_in_list_to_display=0,instance_to_display=40, binarise=True,
reduce_voxel=False)

HU#HHHARBHBHARHHAS VISUALISATION ORIGINAL

HEHEHHSHAHHEH A H AR HEH S
#visualise the original data and not the augmented
display_original=False
original_set_path=’G:/gans_project_root_directory/processed_data/
voxel_datasets/merged_dataset.h5’
if display_original==True:
original_data(original_set_path,epoch_to_get,\
label=4, instance_to_display=68,binarise=True,reduce_voxel=False)

#Because lack of memory RAM the process stops several times, hence I have
to
#merge the results of several points where the process stopped

#checkpoint label O
dictionary_checkpoint_to_get={’0’:[’1050’,’2750’,’4650°,°5500°],
’12:[’1350°,°3050’,°3950°,74550°,°5150°],°2?:[’1800’,°4250°,°5950°],\
’32:[’350’,°3850’,°4550°,75500°],%4’:[’550?,72100°,75950°],\
’57:[’1600°,°2350’,74150°,°5200°,°5950°],°6’:[>800’,75900°],\
>7°:[’6507,°3850’,°4950°,°5850°,°5950’,°6450°],\
’82:[1,292:01,710°:[1,711>:[1,712°:[1,713”:[1,\
’1r01’:[’5650°,°4450°,°4250°,°4050’,73900°,°3800°,°2950°,°2800°,°2650°,"
2500° ,\
»2350’,°1600°,°1450°,°1300°,°1150’,71000°,°800°,°600°,°450°,°250°],\
’1lr01’:[’5850°,°3700’,73550’,°3350’,72350°,°2250°,°600°,°450°,°250°1}%}

HinnHHHHHAAHH##### CHECK CHECKPOINT GANS
HERAHABHARAH AR HARAH BB HARARRBHARARRRHHRH

experimenting_checkpoint=False

if experimenting_checkpoint==True:
path_to_open=data_directory+’/evolution_loss_functions250.h5’
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463
464 dataset= hbpy.File(path_to_open, ’r’)

465 loss_values=np.array(dataset.get(’dicriminator_loss’))
466 dataset.close ()

467 del dataset

468 print (len(loss_values))

469

470

471 H######H#### VISUALISATION LOSS
HEHHHHHHHBHA SRR R AR AR R AR AR BB AR RS R B R B RS SH

472 visualise=False

473 if visualise == True:

A74 evolution_loss_function_discriminator,
evolution_loss_function_generator ,\

75 evolution_accuracy=\

76 get_loss_data_from_checkpoints(data_directory,
dictionary_checkpoint_to_get[’1r01°])

9 loss_gans_plot(evolution_loss_function_discriminator ,\
480 evolution_loss_function_generator,evolution_accuracy,\
481 loss_visualizations_directory ,7)

483

age ######H#SH##A##S## ANALYSIS AUGMENTED SET
HERHHABHARAH AR HARAH AR B AR AR BB H AR AR BB HHHH

485 #Analysis of the dataset to be augmented for sanity check

186 analysis_set=False

487 1f analysis_set==True:

488 #get the dataset we want to increase and the subset within it

489 dataset= hbpy.File(’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/O.2_augmented/augmented_0.2_10.h5’, ‘r
?)

490 attributes_training=np.array(dataset.get(’attributes_training’))

491 attributes_testing=np.array(dataset.get(’attributes_testing’))

492 labels_training=np.array(dataset.get(’labels_training’))

493 labels_testing=np.array(dataset.get(’labels_testing’))

494 dataset.close ()

495

496 uniqueValues, occurCount = np.unique(labels_training, return_counts=
True)

197 print (attributes_training.shape)

498 print (uniqueValues)

499 print (occurCount)

500 #np.savetxt (\

501 #’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet /0.2 _augmented/0.2_shape.txt’,\

502 #np.concatenate ((uniqueValues ,occurCount) ,axis=0) ,fmt="%s")

503

504 #

HARHBAAAHBRBHBRAHBRARHHARBBAARHBABRBAAARBAAHBRAHBRAHRBRAR BB ARBHBRBHBRAHBRARHBERS

505 list_generated_sets_paths=[]



506

507

508

509

510

519
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#dat
#list of dataset to augment
datasets_to_augment=[’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/full_augmented/augmented_full_10
’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/full_augmented/augmented_full_20
’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/full_augmented/augmented_full_30.
’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/full_augmented/augmented_full_40
’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet/full_augmented/augmented_full_50.

#get dataset to augment
augmentation=False
if augmentation==True:

for augmentation_set in [0,1,2,3,4]:

.h5° )\
.h5° )\
h57,\
.h5° )\
h5°1]

path_dataset_to_be_augmented=datasets_to_augment[augmentation_set

]
print (path_dataset_to_be_augmented)
analysis_set=True
if analysis_set==True:
#get the dataset we want to increase and the subset within it
dataset= hbpy.File(path_dataset_to_be_augmented, ’r’)
attributes_training=np.array(dataset.get(’attributes_training
)
attributes_testing=np.array(dataset.get(’attributes_testing’)
)

labels_training=np.array(dataset.get(’labels_training’))

labels_testing=np.array(dataset.get(’labels_testing’))

dataset.close ()

uniqueValues, occurCount = np.unique(labels_training,
return_counts=True)

print (attributes_training.shape)

print (uniqueValues)

print (occurCount)

if augmentation_set == O0:
random_generation=3

if augmentation_set == 1:
random_generation=7

if augmentation_set == 2
random_generation=10

if augmentation_set == 3
random_generation=13

if augmentation_set == 4:
random_generation=18
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5 filter_random=random.sample(range (1, 40), random_generation)
51 #results path

results_path=’G:/gans_project_root_directory/processed_data/
augmented_voxels_dataset_voxnet’

[ I ]
at o
o o

o
o
o

554 augmented_dataset_name_list=[’augmented_O.20_dataset’,’
augmented_0.40 _dataset’,\

555 >augmented_0.60_dataset’,’augmented_0.80_dataset’,’augmented_full
dataset ’]

556

557 ####HHS##H### AUGMENTATION
HEHEHAHHEH AR B H AR A S HEH AR B EH AR BB AR B S HEH B R B SR B H R H S H

558 generated_dataset_path=’G:/gans_project_root_directory/
processed_data/gans_results/13/checkpoints_and_arrays/
generated_data_array_5250.h5"’

559 #augmenting the data

560 augmentation=True

561 filter_random=random.sample (range (1, 40), random_generation)

562 if augmentation==True:

563 merge_dataset_with_augmented (generated_dataset_path,
path_dataset_to_be_augmented,\

564 filters=filter_random, filter=True, label=13, reduce_voxels=
True)

565

566 generated_dataset_path=’G:/gans_project_root_directory/
processed_data/gans_results/13/checkpoints_and_arrays/
generated_data_array_5250.h5"’

567 #augmenting the data

568 augmentation=True

569 filter_random=random.sample(range (1, 40), random_generation)

570 if augmentation==True:

571 merge_dataset_with_augmented(generated_dataset_path,
path_dataset_to_be_augmented,\

572 filters=filter_random, filter=True, label=13, reduce_voxels=
True)

573

574 generated_dataset_path=’G:/gans_project_root_directory/
processed_data/gans_results/13/checkpoints_and_arrays/
generated_data_array_4900.h5°

575 #augmenting the data

576 augmentation=True

577 filter_random=random.sample(range (1, 40), random_generation)

578 if augmentation==True:

579 merge_dataset_with_augmented(generated_dataset_path,
path_dataset_to_be_augmented,\

580 filters=filter_random, filter=True, label=13, reduce_voxels=
True)

581

582

583 #

HARHBAAAHBRBHBRAHBRARHHARBBAARHBABRBAAARBAAHBRAHBRAHRBRAR BB ARBHBRBHBRAHBRARHBERS
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585 augmentation_original=False

if augmentation_original==True:
path_dataset_to_be_augmented=datasets_to_augment [4]
print (path_dataset_to_be_augmented)
HHdHHSH A B RSB HAR#ESE  To delete
HARHHARAHBAAHHBAAHBAAAHBABHBRAAHBRASHBRAHHBHS
original_set_path=’G:/gans_project_root_directory/processed_data/
Voxel_datasets/merged_dataset.h5’
for label_loop in [0,1,2,3,4,5,6,7,8,9,10,11,12,13]:

filters_random=filter_random=random.sample(range (1, 40), 5)

586
587
588

589

590

594

595
596

597

598

599
600
601
602

603

8
9
10
11

12

merge_dataset_with_original(original_set_path,

path_dataset_to_be_augmented,\
label=1label_loop, filters=filters_random, filter=True,
reduce_voxels=False)

for label_loop in [11,12]:
filters_random=filter_random=random.sample(range (1, 40), 2)

merge_dataset_with_original(original_set_path,

path_dataset_to_be_augmented,\
label=1label_loop, filters=filters_random, filter=True,
reduce_voxels=False)

analysis_set=False

if analysis_set==True:
#get the dataset we want to increase and the subset within it
dataset= hbpy.File(path_dataset_to_be_augmented, ’r’)
attributes_training=np.array(dataset.get(’attributes_training’))
attributes_testing=np.array(dataset.get(’attributes_testing’))
labels_training=np.array(dataset.get(’labels_training’))

labels_testing=np.array(dataset.get(’labels_testing’))

dataset.close ()

uniqueValues, occurCount = np.unique(labels_training,
True)

print (attributes_training.shape)

print (uniqueValues)

print (occurCount)

#np.savetxt (\

Listing 4: Augmentation and visualisation

#Import standard libraries

import
import
import
import
import
import
import
import
import
import
import

os
numpy as np

pandas as pd

sys

csvVv

requests
xml.etree.ElementTree as ET
xmltodict

shutil

h5py
open3d as o03d

13 from mpl_toolkits.mplot3d import Axes3D

return_counts=
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import numpy as np
import matplotlib.pyplot as plt

#glob lists the elements in the current directory with a specific pattern

import glob

from

matplotlib import pyplot as plt

import matplotlib.patches as patches

from
from
from

voxelgrid import VoxelGrid
mpl_toolkits.mplot3d import Axes3D
sklearn import preprocessing

#functions we are using

#fuc
def

ntion to manage directories
get_1ist_elements_pattern_not_current_directory(directory_to_search,

pattern):

#Comprehension list that by given a directory, explores
pattern_files= [element for element in os.listdir(directory_to_search

) if\

def

element .endswith("."+pattern)]
#
return pattern_files

get_list_elements_without_pattern_not_current_directory(

directory_to_search):

#Comprehension list that by given a directory, explores

files= [element for element in os.listdir(directory_to_search)]
#

return files

#funntion to get automatically the path of a given file in the curren
directory

def

def

generate_directory_path_contains_current_directory(folder_name):
#Get current directoy

current_directory=os.getcwd ()

#Create a directory path to explore
directory_to_explore=current_directory+’/’+folder_name

#Create a directory path to explore

return directory_to_explore

create_folder_in_path_check_folder_created(path_creation,

path_to_create):

#
directories_in_directory_where_eant_create=\
get_list_elements_without_pattern_not_current_directory(path_creation

)

#
directories_path_in_directory_where_eant_create=\
[path_creation+’/’+path for path in \
directories_in_directory_where_eant_create]

#

if path_to_create not in

directories_path_in_directory_where_eant_create:
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def

def

#
os.mkdir (path_to_create)

open_obj_to_data_frame (obj_file):
data = pd.read_csv(obj_file,delimiter=’ ’,names=[’cat’,’x’,’y’,’z’],\
skiprows=2)

data_frame_point_cloud=data.loc[datal[’cat’] == ’v’]
return data_frame_point_cloud[[’x’,’y’,’z’]1]

normalize_dataframe_to_array(dataframe):
#Name of the coordinates. We use this to parse the dataframe
coordinates=[’x’,’y’,’z"]

#Shape of the dataframe.We use this info to create a numpy array with
#the same characteristics

number_points=dataframe.shape [0]
number_coordinates=dataframe.shape [1]

#Create a dataframe
normalised_pointcloud_array=np.zeros ((number_points,
number_coordinates))

counter=0

#Loop through the coordinate

for coordinate in coordinates:
#Get the column we want to normalise
column_to_normalise=np.array(dataframe[coordinate].values.\
astype (float)) .reshape(-1,1)

#Get the normalizer
min_max_scaler=preprocessing.MinMaxScaler ()

#Normalise the column
normalised_column= min_max_scaler.fit_transform/(
column_to_normalise)

#put the normalised column into the normalised array
normalised_pointcloud_arrayl[:,counter]=normalised_column.flatten

O

#Add one to the counter
counter=counter+1

return normalised_pointcloud_array

#Function to voxelize a single point cloud using the functions in the

def

voxelgrid
cloud_voxelize_binary_values (poin_cloud,voxgrid_dimension=[32,32,32])

#Get the voxel object
grid=VoxelGrid (poin_cloud, x_y_z=voxgrid_dimension)
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#From the voxel object get an array that indicates the number of
point

#within each boxel
dimensional_cuadatric_array=np.array(grid.vector)

#if a voxel is not empty assign value 1 to the voxel. Otherwise,
assign the

#value O
dimensional_cuadatric_array=np.where(dimensional_cuadatric_array
>0,1,0)

#

number_voxels=voxgrid_dimension [0]*voxgrid_dimension [1]*\
voxgrid_dimension [2]

#

dimensional_cuadatric_array=\
dimensional_cuadatric_array.reshape (1,number_voxels)

#

return dimensional_cuadatric_array

6 #Set up directories
7 #root directory

current_directory=os.getcwd ()

#directory where the data is stored
data_directory=’G:/gans_project_root_directory/hips/50004 _hips/’
#from the data directory get the name of our data

data_names=\
get_list_elements_pattern_not_current_directory(data_directory,’obj’)

#set up directory where we are going to save the visualisations
visualizations_directory=’G:/gans_project_root_directory/visualizations’
#create the visualization directory

create_folder_in_path_check_folder_created(current_directory,\
visualizations_directory)

for element_index in range(len(data_names)):
#get the obj that we want to
obj_item_path=data_directory+’/’+data_names[element_index]

#open the file and transform it to a normalise pointcloud
point_cloud=open_obj_to_data_frame(obj_item_path)
point_cloud=norma1ize_dataframe_to_array(point_cloud)

#0d3 object and point cloud plotting
three_dimensional_object=03d.geometry.PointCloud ()
three_dimensional_object.points=03d.utility.Vector3dVector (
point_cloud)

03d.visualization.draw_geometries ([three_dimensional_object])

#voxels 64
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sixty_four_voxel=\
cloud_voxelize_binary_values (point_cloud,voxgrid_dimension
=[64,64,64])

fig = plt.figure()

ax = fig.gca(projection=’3d’)

ax.grid (False)

plt.axis (’off’)

ax.voxels(sixty_four_voxel.reshape ((64,64,64)),facecolors=’aqua’,
edgecolor="k")

plt.show ()

#voxel 32

three_two_voxel=\
cloud_voxelize_binary_values(point_cloud,voxgrid_dimension
=[32,32,32])

fig = plt.figure()

ax = fig.gca(projection=’3d’)

ax.grid(False)

plt.axis(’off’)

ax.voxels (three_two_voxel.reshape ((32,32,32)),facecolors=’aqua’,
edgecolor="k")

plt.show ()

Listing 5: Visualisation of obj files and triangular meshes

#Import standard libraries
import os

import numpy as np

import pandas as pd

import sys

import csv

import requests

import xml.etree.ElementTree as ET
import xmltodict

import shutil

import hbpy

#glob lists the elements in the current directory with a specific pattern
import glob

from matplotlib import pyplot as plt

import matplotlib.patches as patches

from voxelgrid import VoxelGrid

from mpl_toolkits.mplot3d import Axes3D

from sklearn import preprocessing

def get_list_elements_without_pattern_not_current_directory (
directory_to_search):
#Comprehension list that by given a directory, explores
files= [element for element in os.listdir(directory_to_search)]
#
return
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27 def get_list_elements_pattern_not_current_directory(directory_to_search,

pattern):

28 #Comprehension list that by given a directory, explores

29 pattern_files= [element for element in os.listdir(directory_to_search
) if\

30 element .endswith("."+pattern)]

31 #

32 return pattern_files

34 def get_list_elements_without_pattern_not_current_directory(
directory_to_search):
35 #Comprehension list that by given a directory, explores

36 files= [element for element in os.listdir(directory_to_search)]
37 #
38 return files

40 #funntion to get automatically the path of a given file in the curren
directory

11 def generate_directory_path_contains_current_directory(folder_name):

42 #Get current directoy

13 current_directory=os.getcwd ()

14 #Create a directory path to explore

45 directory_to_explore=current_directory+’/’+f01der_name

16 #Create a directory path to explore

A7 return directory_to_explore

19 def create_folder_in_path_check_folder_created(path_creation,
path_to_create):

50 #

51 directories_in_directory_where_eant_create=\

52 get_list_elements_without_pattern_not_current_directory(path_creation
)

53 #

54 directories_path_in_directory_where_eant_create=\

55 [path_creation+’/’+path for path in \

56 directories_in_directory_where_eant_create]

57 #

58 if path_to_create not in
directories_path_in_directory_where_eant_create:

59 #

60 os.mkdir (path_to_create)

62 #fucntion to create folders in a given path

63 def create_folders_in_path(path,folder_names_list):

64 #create folders in a given path. The folders names are given by a
list

65 for folder_name in folder_names_list:

66 path_new_directory= path+ ’/’+ folder_name

67 create_folder_in_path_check_folder_created(path,
path_new_directory)

68

6¢

70 HHEHHHHHAAHHHBAAHHBAAHHRH 0BJ TRANSFORMATION
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#
def

def

HAHAHHAHARHHAHHAH AR B AR RHH

open_obj_to_data_frame (obj_file):
data = pd.read_csv(obj_file,delimiter=’ ’,names=[’cat’,’x’,’y’,’z’],\
skiprows=2)

data_frame_point_cloud=data.loc[datal’cat’] == ’v’]

return data_frame_point_cloud([[’x’,’y’,’z’]]

normalize_dataframe_to_array(dataframe):
#Name of the coordinates. We use this to parse the dataframe
coordinates=[’x’,’y’,’z"]

#Shape of the dataframe.We use this info to create a numpy array with
#the same characteristics

number_points=dataframe.shape [0]
number_coordinates=dataframe.shape [1]

#Create a dataframe
normalised_pointcloud_array=np.zeros ((number_points,
number_coordinates))

counter=0

#Loop through the coordinate

for coordinate in coordinates:
#Get the column we want to normalise
column_to_normalise=np.array(dataframe[coordinate].values.\
astype (float)) .reshape(-1,1)

#Get the normalizer
min_max_scaler=preprocessing.MinMaxScaler ()

#Normalise the column
normalised_column= min_max_scaler.fit_transform/(
column_to_normalise)

#put the normalised column into the normalised array
normalised_pointcloud_arrayl[:,counter]=normalised_column.flatten

O

#Add one to the counter
counter=counter+1

return normalised_pointcloud_array

#Function to voxelize a single point cloud using the functions in the

def

voxelgrid
cloud_voxelize_binary_values(poin_cloud,voxgrid_dimension=[32,32,32])

#Get the voxel object
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118 grid=VoxelGrid(poin_cloud, x_y_z=voxgrid_dimension)

119

120 #From the voxel object get an array that indicates the number of
point

121 #within each boxel

122 dimensional_cuadatric_array=np.array(grid.vector)

123

124 #if a voxel is not empty assign value 1 to the voxel. Otherwise,
assign the

125 #value O

126 dimensional_cuadatric_array=np.where(dimensional_cuadatric_array
>0,1,0)

127 #

128 number_voxels=voxgrid_dimension [0]*voxgrid_dimension [1]*\

129 voxgrid_dimension [2]

130 #

131 dimensional_cuadatric_array=\

132 dimensional_cuadatric_array.reshape(l,number_voxels)

133 #

134 return dimensional_cuadatric_array

135

136 #

137 def create_array_labels(label,number_instances):

138 #

139 label_array=np.full ((number_instances), label)

140 #

141 return label_array

143 #

144 def transform_cloud_points_into_single_file_voxels(
path_contains_folders_we_want_analyse,\

145 list_folders_to_parse,labels_list ,voxgrid_size=[32,32,32]):

146 #

147 number_folders_explore=len(list_folders_to_parse)

148 #get the path of the folders that we want to explore given a path and
the

149 #name of the folders

150 paths_to_explore=[path_contains_folders_we_want_analyse+’/’\

151 ’results’+’/’+folder_to_parse for folder_to_parse in

list_folders_to_parse]

153 #

154 results_path=path_contains_folders_we_want_analyse+’/’+’
results_voxels’

155 #

156 create_folder_in_path_check_folder_created (\

157 path_contains_folders_we_want_analyse,results_path)

158

159 #create the paths of the folder to store the voxels

160 results_point_cloud_directories=[
path_contains_folders_we_want_analyse+’/’+\

161 ’results_voxels’+’/’+folder_to_ana1yse+’_’+’voxels’ for

folder_to_analyse in\



194
195
196
197
198
199
200

201

C. Code

94

list_folders_to_parse]

#create the folders to store the results

for

for

directory in results_point_cloud_directories:
create_folder_in_path_check_folder_created (\
results_path,directory)

folder_to_explore_index in range (number_folders_explore):

#

store_results_folder=results_point_cloud_directories\
[folder_to_explore_index]

#

folder_to_explore=paths_to_exp10re[folder_to_explore_index]

#

label=1labels_list [folder_to_explore_index]

#
action_of_analysis=1list_folders_to_parse[folder_to_explore_index]
#

elements_in_folder_to_explore=\
get_1ist_elements_pattern_not_current_directory(folder_to_explore

obj?)

#

number_intems_to_voxelise=len(elements_in_folder_to_explore)

#

number_voxels=voxgrid_size [0]*voxgrid_size[1]*voxgrid_size [2]

#

voxel_matrix=np.zeros ((number_intems_to_voxelise ,number_voxels))
#
labels_array=create_array_labels (label ,number_intems_to_voxelise)
#

for element_to_voxelize_index in range (number_intems_to_voxelise)

element_to_voxelise=folder_to_explore+’/’+\
elements_in_folder_to_explore[element_to_voxelize_index]

#
point_cloud=open_obj_to_data_frame(element_to_voxelise)
#

point_cloud=normalize_dataframe_to_array(point_cloud)

#

voxel_transformation=\
cloud_voxelize_binary_values (point_cloud,voxgrid_dimension=

voxgrid_size)

#

voxel_matrix[element_to_voxelize_index]=voxel_transformation
#
with hbpy.File(store_results_folder+’/’+action_of_analysis+’.h5’\
, ’w’) as hf:

hf.create_dataset (’attributes’, data=voxel_matrix)

hf.create_dataset (’labels’, data=labels_array)
hf.close ()
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return ’done’

HHABHHHHHHHFHFHHHFHSHHHH IMPLEMENTATION
HERHHHHHAR AR R HABRA R AR H AR SRR RS
; #Folder to explore

folders_to_explore=[’punching’,’running_on_spot’,’chicken_wings’,’hips’,\

’knees’,’ jumping_jacks’,’shake_arms’,’shake_shoulders’,’shake_hips’,\

’one_leg_loose’,’one_leg_jump’,’light_hopping_loose’,’light_hopping_stiff
PR

’jiggle_on_toes’]

#Jump list

jump_list=[45,50,30,50,40,40,40,50,35,40,45,45,40,30]
#labels to assign to each action
labels_list=[0,1,2,3,4,5,6,7,8,9,10,11,12,13]

#Get current directory

current_directory=os.getcwd ()

; #retrieve_desired_actions(current_directory,folders_to_explore, jump_list,
jump=3)

transform_cloud_points_into_single_file_voxels (current_directory,\
folders_to_explore,labels_list ,voxgrid_size=[32,32,32])

Listing 6: Preprocessing: transform point clouds to voxels for multiple folders and delete
the initial frames and smoothing of the frames

#Import standard libraries
import os

import numpy as np

import pandas as pd

import sys

import csv

import requests

import xml.etree.ElementTree as ET
import xmltodict

import shutil

import hbpy

#glob lists the elements in the current directory with a specific pattern
import glob

from matplotlib import pyplot as plt

import matplotlib.patches as patches

from voxelgrid import VoxelGrid

s from mpl_toolkits.mplot3d import Axes3D

from sklearn import preprocessing

from sklearn.model_selection import train_test_split

def get_list_elements_without_pattern_not_current_directory(
directory_to_search):
#Comprehension list that by given a directory, explores
files= [element for element in os.listdir (directory_to_search)]
#
return files
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def create_folder_in_path_check_folder_created(path_creation,

path_to_create):
#
directories_in_directory_where_eant_create=\
get_list_elements_without_pattern_not_current_directory(path_creation
)
#
directories_path_in_directory_where_eant_create=\
[path_creation+’/’+path for path in \
directories_in_directory_where_eant_create]
#
if path_to_create not in
directories_path_in_directory_where_eant_create:

#

os.mkdir (path_to_create)

#fucntion to create folders in a given path
def create_folders_in_path(path,folder_names_list):
#create folders in a given path. The folders names are given by a
list
for folder_name in folder_names_list:
path_new_directory= path+ >/’+ folder_name
create_folder_in_path_check_folder_created(path,
path_new_directory)

def merge_hpy_file(results_root_directory,path_folders_with_files,
list_folders_information_merge,\

reduce_set=False, percentage_to_reduce_dataset=0.80):
#
paths_to_explore=[path_folders_with_files+’/’+folder_ana1ysis+’
_point_cloud’ for\
folder_analysis in list_folders_information_merge]
#
directory_to_create_results=results_root_directory+’/’+’merged_data’
#
create_folder_in_path_check_folder_created(results_root_directory,\
directory_to_create_results)

#
number_paths_to_explore=len(paths_to_explore)
#

path_to_explore=paths_to_explore [0]

#

file_name=1list_folders_information_merge [0]

#
file_name_path=path_to_explore+’/’+file_name+’.h5’
#

hf = hbpy.File(file_name_path, ’r’)

#

attributes= np.array(hf.get(’attributes’))

#

labels=np.array (hf.get (’labels’))
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73 #

74 hf.close ()

75 #

76 for path_to_explore_index in range(l,number_paths_to_explore):

77 #

78 path_to_explore=paths_to_explore[path_to_explore_index]

79 #

80 file_name=1ist_folders_information_merge[path_to_explore_index]

81 #

82 file_name_path=path_to_explore+’/’+file_name+’.h5’

83 #

84 hf = hbpy.File(file_name_path, ’r’)

85 #

86 attributes_to_concatenate=np.array (hf.get(’attributes’))

87 #

88 attributes=np.concatenate ((attributes,attributes_to_concatenate),
axis=0)

89 #

90 labels_to_add=np.array(hf.get(’labels’))

91 #

92 labels=np.concatenate ((labels,labels_to_add), axis=0)

93 #

94 hf.close ()

95

96 if reduce_set == True:

97 #

98 attributes_to_maintain,attributes_to_delete,\

99 labels_to_maintain,labels_to_delete=\

100 train_test_split (attributes, labels,\

101 test_size=percentage_to_reduce_dataset ,stratify=1labels,
random_state=42)

102 #

103 percentage_data_kept=1-percentage_to_reduce_dataset

104 print (attributes_to_maintain.shape)

105 print (labels_to_maintain.shape)

106 print (np.unique(labels_to_maintain))

107 print (np.unique(labels_to_maintain, return_counts=True) [1])

108 #

109 attributes_training,attributes_testing,\

110 labels_training,labels_testing=\

111 train_test_split(attributes_to_maintain,labels_to_maintain,\

112 test_size=0.20,stratify=labels_to_maintain,\

113 random_state=42)

114 #

115 with hbpy.File(directory_to_create_results+’/’+’merged_dataset_’
+\

116 str(round (percentage_data_kept ,3))+’labelled_instances’+’.h5’, ’w
’) as hf:

117 hf.create_dataset (’attributes_training’, data=
attributes_training)

118 hf.create_dataset (’labels_training’, data=labels_training)

119 hf.create_dataset (’attributes_testing’, data=
attributes_testing)
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hf.create_dataset(’labels_testing’, data=labels_testing)

hf.close ()
print (’training’)
print (attributes_training.shape)
print (’testing’)
print (labels_training.shape)
print (np.unique(labels_training))
print (np.unique(labels_training, return_counts=True) [1])
#
return ’done’

else:

attributes_training,attributes_testing,labels_training,

labels_testing=\

train_test_split(attributes,labels,test_size=0.20, stratify=

labels,\
random_state=42)
#

print (attributes_training.shape)
print (labels_training.shape)
print (np.unique(labels_training))

print (np.unique(labels_training, return_counts=True) [1])

#
with hbpy.File(directory_to_create_results+’/’+’merged_dataset’+’
.h57\
, ’w’) as hf:
hf.create_dataset (’attributes_training’, data=

attributes_training)

hf.create_dataset(’labels_training’,

data=labels_training)

hf.create_dataset (’attributes_testing’, data=

attributes_testing)

hf.create_dataset(’labels_testing’,

hf.close ()

return ’done’

def create_training_testing_sets(hpy_file_path,

#

hf = hbpy.File(hpy_file_path, ’r’)

#

attributes= np.array(hf.get(’attributes’))
print (attributes.shape)

#

labels=np.array (hf.get (’labels’))

print (labels.shape)

#

data=labels_testing)

path_store_splited_file):

attributes_training,attributes_testing,labels_training,labels_testing

=\

train_test_split(attributes,labels,test_size=0.15, stratify=labels,\

random_state=42)
#
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hf.close ()

#

with hbpy.File(path_store_splited_file+’/’+’trainig_testing_dataset
>+ .h57\

, ’w’) as hf:

return print(’done’)

HHHAHHHRARHHBRA RS RASHHRH IMPLEMENTATION
HARHHHAAHH AR B R AR R B AR HHARHHS

7 #Folder to explore

folders_to_explore=[’punching’,’running_on_spot’,’chicken_wings’,’hips’,\

’knees’,’ jumping_jacks’,’shake_arms’,’shake_shoulders’,’shake_hips’,\

’one_leg_loose’,’one_leg_jump’,’light_hopping_loose’,’light_hopping_stiff
J’\

’jiggle_on_toes’]

#Jump list
jump_list=[45,50,30,50,40,40,40,50,35,40,45,45,40,30]

5 #labels to assign to each action

labels_list=[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
#Get current directory

; current_directory=os.getcwd ()

#Create path to explore
path_explore=current_directory+’/’+’results_pointclouds’
#

merge_hpy_file(current_directory ,path_explore,folders_to_explore)

#

splits=[0.8, 0.6, 0.4, 0.2]

for split in splits:
print (split)
merge_hpy_file (current_directory ,path_explore,folders_to_explore,h\
reduce_set=True, percentage_to_reduce_dataset=split)

Listing 7: Preprocessing: create training and testing sets

## Code retrieved from https://www.kaggle.com/roestigraben/grid-of-voxels
-to-train-linear -model

import numpy as np

import open3d as o03d

import hbpy

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from voxelgrid import VoxelGrid

import random

import os

def get_list_elements_without_pattern_not_current_directory(
directory_to_search):
#Comprehension list that by given a directory, explores
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14 files= [element for element in os.listdir(directory_to_search)]
15 #
16 return files

18 def create_folder_in_path_check_folder_created(path_creation,
path_to_create):

19 #

20 directories_in_directory_where_eant_create=\

21 get_list_elements_without_pattern_not_current_directory(path_creation
)

22 #

23 directories_path_in_directory_where_eant_create=\

24 [path_creation+’/’+path for path in \

25 directories_in_directory_where_eant_create]

26 #

27 if path_to_create not in
directories_path_in_directory_where_eant_create:

28 #

29 os.mkdir (path_to_create)

31 #fucntion to create folders in a given path

32 def create_folders_in_path(path,folder_names_list):

33 #create folders in a given path. The folders names are given by a
list

34 for folder_name in folder_names_list:

35 path_new_directory= path+ >/’+ folder_name

36 create_folder_in_path_check_folder_created(path,
path_new_directory)

38 def reduce_dimension_point_cloud(point_cloud_to_reduce):
39 #create a od3 object

40 point_cloud = 03d.PointCloud ()

11 #with the o0d3 trasnform the point cloud array into a od3 numpy array
12 point_cloud.points = 03d.Vector3dVector (point_cloud_to_reduce)

43 #03d.draw_geometries ([point_cloud])

14 #reduce the dimension of the point cloud

15 reduced_point_cloud= o03d.geometry.voxel_down_sample (point_cloud,
voxel_size=0.035)

16 #03d.visualization.draw_geometries ([reduced_point_cloud])

A7 #tranform the 3od object back into a numpy array

48 reduced_point_cloud= np.asarray(reduced_point_cloud.points)
19 #return the reduced point cloud
50 return np.array(reduced_point_cloud)

53 #function to polish the shape of the point clouds
54 def modify_randomly_point_dimensions(point_cloud,dimension):

55 difference_point_cloud_dimensions=dimension-point_cloud.shape [0]

56 if difference_point_cloud_dimensions < O:

57 difference_point_cloud_dimensions=-
difference_point_cloud_dimensions

58 #generate random numbers between O and the dimension of the point

cloud to
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#modify
random_instances=random.sample (range (0, point_cloud.shape [0]) ,\
int (difference_point_cloud_dimensions))

#delete the instances randomly selected
normalised_point_cloud=np.delete(point_cloud,random_instances,

axis=0)

else:

#generate random numbers between O and the dimension of the point
cloud to
#modify
random_instances=random.sample (range (0,point_cloud.shape[0]) ,\
int (difference_point_cloud_dimensions))
#retrieve the random instances from the point cloud
retrieved_instances=point_cloud[random_instances]
#concatenate the retrieved instances to the the point cloud
normalised_point_cloud=\
np.concatenate ((point_cloud,retrieved_instances),axis=0)
#return the normalised point cloud
return normalised_point_cloud

#function to transform an entire array/dataframe
def reduce_point_cloud_dataset(dataset):
#get the number of instances in the dataset
number_instances_dataset=dataset.shape [0]

#loop through all the intance in the dataset
for element_to_process_index in range (number_instances_dataset):
#First we retrieve the first element in the dataset and the we

#concatenate more elements to it
if element_to_process_index ==

#get the point cloud to reduce dimensionallity
element_to_process=dataset[element_to_process_index]
#reduce the dimension of the point cloud
reduced_point_cloud=reduce_dimension_point_cloud(

element_to_process)

more

#polish the shape of the point cloud

reduced_point_cloud=\
modify_randomly_point_dimensions(reduced_point_cloud ,1800)
# get the dimensions of the reduced point cloud
rows_point_reduced_cloud=reduced_point_cloud.shape[0]
columns_point_reduced_cloud=reduced_point_cloud.shape[1]
#reshape the point cloud in a way that we can concatenate

#point clouds to it

final_point_cloud_array=\

reduced_point_cloud.reshape\
((1,rows_point_reduced_cloud,columns_point_reduced_cloud))

#if is not the first element just append instances to the

original

else:

element_to_process=dataset[element_to_process_index]
#get the point cloud into a dataframe



107

C. Code

102

reduced_point_cloud=reduce_dimension_point_cloud(

element_to_process)

results

axis=0)

#polish the shape of the point cloud

reduced_point_cloud=\
modify_randomly_point_dimensions(reduced_point_cloud,1800)
# get the dimensions of the reduced point cloud
rows_point_reduced_cloud=reduced_point_cloud.shape [0]
columns_point_reduced_cloud=reduced_point_cloud.shape[1]
#reshape the point cloud and concatenate it to the main

#structure

reduced_point_cloud=\

reduced_point_cloud.reshape ((1,\
rows_point_reduced_cloud, columns_point_reduced_cloud))
#concatenation

final_point_cloud_array=\

np.concatenate ((final_point_cloud_array ,reduced_point_cloud),

#return the entire modified set
return final_point_cloud_array

; H##H##HAAH######## [MPLEMENTATION

HARBHERAAHBAAAHBRAAHBRARHBRAHBRARH B AR R B HAR SR ERHHH

s #get current directory

current_directory=os.getcwd ()
#directory to store results

results_directory=current_directory+’/’+’processed_point_clouds’

#create a directory to store the processed point clouds
create_folder_in_path_check_folder_created(current_directory,
results_directory)

#directory with the data
data_directory=current_directory+’/’+’merged_data’

datafiles_to_process=[’merged_dataset.h5’,\
’merged_dataset_0.8labelled_instances.h5’,\
‘merged_dataset_0.6labelled_instances.h5’,\
’merged_dataset_o.41abelled_instances.h5’,\
’merged_dataset_0.2labelled_instances.h5’]

datafiles_name=[’fu11_pt’,’0.8 dataset_pt’,’0.6 dataset_pt’,’0.4
dataset_pt’,\
’0.2 dataset_pt’]

#get the number of databases

number_datasets=len(datafiles_to_process)

#loop through all the data

for dataset_index in range (number_datasets):
#get the dataset name
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dataset_name=datafiles_to_process[dataset_index]

#get the data

dataset= hbpy.File(data_directory+’/’+dataset_name, ’r’)
attributes_training=np.array(dataset.get(’attributes_training’))
attributes_testing=np.array(dataset.get(’attributes_testing’))
labels_training=np.array(dataset.get(’labels_training’))
labels_testing=np.array(dataset.get(’labels_testing’))
dataset.close ()

#sanity check with print statements
print (attributes_training.shape)

#process the datasets
attributes_training= reduce_point_cloud_dataset(attributes_training)
attributes_testing= reduce_point_cloud_dataset (attributes_testing)

#sanity check with print statements
print (attributes_training.shape)

#save the dataset
with hbpy.File(results_directory+’/’+datafiles_name[dataset_index]+’.
h5°\
, ’w’) as hf:
hf.create_dataset(’attributes_training’, data=attributes_training

)
hf.create_dataset(’labels_training’, data=labels_training)
hf.create_dataset (’attributes_testing’, data=attributes_testing)
hf.create_dataset(’labels_testing’, data=labels_testing)
hf.close ()

Listing 8: Algorithm point clouds to voxels



